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ProASIC3L FPGA Fabric User’s Guide
Figure 2-1 shows the concept of FF pin control in Flash*Freeze mode type 1. 

Figure 2-2 shows the timing diagram for entering and exiting Flash*Freeze mode type 1.

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin
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Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram
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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
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Using Sleep and Shutdown Modes in the System
Depending on the power supply and the components used in an application, there are many ways to
power on or off the power supplies connected to the device. For example, Figure 2-6 shows how a
microprocessor can be used to control a power FET. Microsemi recommends that power FETs with low
resistance be used to perform the switching action. 

Figure 2-7 shows how a microprocessor can be used with a voltage regulator’s shutdown pin to turn on
or off the power supplies connected to the device.

Power-Up/-Down Behavior
By design, all IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 I/Os are in tristate
mode before device power-up. The I/Os remain tristated until the last voltage supply (VCC or VCCI) is
powered to its activation level. After the last supply reaches its functional level, the outputs exit the
tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is
independent of the VCC and VCCI sequence or the state of other voltage supplies of the FPGA (VPUMP
and VJTAG). During power-down, device I/Os become tristated once the first power supply (VCC or VCCI)
drops below its deactivation voltage level. The I/O behavior during power-down is also independent of
voltage supply sequencing. 
Figure 2-8 on page 34 shows a timing diagram when the VCC power supply crosses the activation and
deactivation trip points in a typical application when the VCC power supply ramp-rate is 100 µs (ramping
from 0 V to 1.5 V in this example). This is the timing diagram for the FPGA entering and exiting Sleep
mode, as this function is dependent on powering VCC down or up. Depending on the ramp-rate of the

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET

Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage Regulator
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You can use the syn_global_buffers attribute in Synplify to specify a maximum number of global macros
to be inserted in the netlist. This can also be used to restrict the number of global buffers inserted. In the
Synplicity 8.1 version or newer, a new attribute, syn_global_minfanout, has been added for low power
flash devices. This enables you to promote only the high-fanout signal to global. However, be aware that
you can only have six signals assigned to chip global networks, and the rest of the global signals should
be assigned to quadrant global networks. So, if the netlist has 18 global macros, the remaining 12 global
macros should have fanout that allows the instances driven by these globals to be placed inside a
quadrant.

Global Promotion and Demotion Using PDC
The HDL source file or schematic is the preferred place for defining which signals should be assigned to
a clock network using clock macro instantiation. This method is preferred because it is guaranteed to be
honored by the synthesis tools and Designer software and stop any replication on this net by the
synthesis tool. Note that a signal with fanout may have logic replication if it is not promoted to global
during synthesis. In that case, the user cannot promote that signal to global using PDC. See Synplicity
Help for details on using this attribute. To help you with global management, Designer allows you to
promote a signal to a global network or demote a global macro to a regular macro from the user netlist
using the compile options and/or PDC commands. 
The following are the PDC constraints you can use to promote a signal to a global network:

1. PDC syntax to promote a regular net to a chip global clock:
assign_global_clock –net netname

The following will happen during promotion of a regular signal to a global network:
– If the net is external, the net will be driven by a CLKINT inserted automatically by Compile. 
– The I/O macro will not be changed to CLKBUF macros. 
– If the net is an internal net, the net will be driven by a CLKINT inserted automatically by

Compile.
2. PDC syntax to promote a net to a quadrant clock: 

assign_local_clock –net netname –type quadrant UR|UL|LR|LL

This follows the same rule as the chip global clock network.
The following PDC command demotes the clock nets to regular nets.
unassign_global_clock -net netname

Note: OAVDIVRST exists only in the Fusion PLL.
Figure 3-15 • PLLs in Low Power Flash Devices 
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Global Resources in Low Power Flash Devices
Step 1
Run Synthesis with default options. The Synplicity log shows the following device utilization: 

Step 2
Run Compile with the Promote regular nets whose fanout is greater than option selected in Designer;
you will see the following in the Compile report:
Device utilization report:
==========================
CORE Used: 1536 Total: 13824 (11.11%)
IO (W/ clocks) Used: 19 Total: 147 (12.93%)
Differential IO Used: 0 Total: 65 (0.00%)
GLOBAL Used: 8 Total: 18 (44.44%)
PLL Used:      2 Total: 2 (100.00%)
RAM/FIFO Used:      0 Total: 24 (0.00%)
FlashROM Used:      0 Total: 1 (0.00%)
……………………
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK1_c
Driver: QCLK1_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to
global networks. 

Cell usage:

cell count area count*area

DFN1E1C1
BUFF
INBUF
VCC
GND
OUTBUF
CLKBUF
PLL
TOTAL

1536
278
10
9
9
6
3
2

1853

2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

3072.0
278.0
0.0
0.0
0.0
0.0
0.0
0.0

3350.0
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Figure 4-22 • CCC Block Control Bits – Graphical Representation of Assignments
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the 
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the 
loading of the CCC configuration shift register. 
Low power flash devices provide a user interface macro between the JTAG pins and the device core 
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the 
configuration register ports via the JTAG pins. 
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in 
Microsemi’s Low Power Flash Devices" section on page 363.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control 
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP 
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP 
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go 
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and 
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is 
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description  
Table 4-8 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87>  GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks 

to the NGMUX (refer to Table 4-17 on 
page 110).2

86  OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by the divider factor 
in Table 4-18 on page 111.

85  OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by a 0.5 factor (refer 
to Table 4-18 on page 111).

84  OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by certain 0.5 factor 
(refer to Table 4-16 on page 110).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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Figure 4-37 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and 
the stage 2 (final) output period is 3.56 ns (~280 MHz). 

Figure 4-36 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-37 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
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recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks. 

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 166.

Figure 6-9 • Block Diagram of a Sample User Interface
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Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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I/O Structures in IGLOO and ProASIC3 Devices
• In Active and Static modes:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High
– Output buffers with pull-up, driven Low
– Output buffers with pull-down, driven High
– Tristate buffers with pull-up, driven Low
– Tristate buffers with pull-down, driven High

• In Flash*Freeze mode:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device
Model (CDM).
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the off state, except when
transient voltage is significantly above VCCI or below GND levels. 
In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and
cannot be switched off.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on
page 193 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.
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Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in IGLOO and ProASIC3 Devices

I/O Assignment

Clamp Diode 1 Hot Insertion 5 V Input Tolerance 2 

Input and Output 
Buffer

AGL030 
and 

A3P030

Other 
IGLOO 

and 
ProASIC3 
Devices

AGL015 
and 

AGL030 

Other 
IGLOO 
Devices 
and All 

ProASIC3 

AGL030 
and 

A3P030

Other 
IGLOO 

and 
ProASIC3 
Devices

3.3 V LVTTL/LVCMOS No Yes Yes No Yes 2 Yes 2 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes 2 Enabled/Disabled

LVCMOS 2.5 V 5 No Yes Yes No Yes 2 Yes 4 Enabled/Disabled

LVCMOS 2.5 V/5.0 V 6 N/A Yes N/A No N/A Yes 4 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential, LVDS/
B-LVDS/M-
LVDS/LVPECL 

N/A Yes N/A No N/A No Enabled/Disabled

Notes:
1. The clamp diode is always off for the AGL030 and A3P030 device and always active for other IGLOO and

ProASIC3 devices.
2. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
3. Refer to Table 7-8 on page 189 to Table 7-11 on page 190 for device-compliant information.
4. Can be implemented with an external resistor and an internal clamp diode.
5. The LVCMOS 2.5 V I/O standard is supported by the 30 k gate devices only; select the LVCMOS25 macro.
6. The LVCMOS 2.5 V / 5.0 V I/O standard is supported by all IGLOO and ProASIC3 devices except 30K gate

devices; select the LVCMOS5 macro.
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I/O Structures in IGLOO and ProASIC3 Devices
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 7-17 on page 201 shows how bus contention is created, and
Figure 7-18 on page 201 shows how it can be avoided with the skew circuit.  

Figure 7-15 • Timing Diagram (option 2: enables skew circuit)
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I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards. Table 7-17 list the valid I/O attributes that can be
manipulated by the user for each I/O standard. 
Single-ended I/O standards in low power flash devices support up to five different drive strengths.

Table 7-18 lists the default values for the above selectable I/O attributes as well as those that are preset
for that I/O standard. See Table 7-14 on page 203 to Table 7-16 on page 203 for SLEW and OUT_DRIVE
settings.

Table 7-17 • IGLOO and ProASIC3 I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW 
(output 
only)

OUT_DRIVE 
(output only)

SKEW
(all macros 

with OE) RES_PULL
OUT_LOAD 

(output only) COMBINE_REGISTER

LVTTL/LVCMOS 3.3 V ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 2.5 V ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 2.5/5.0 V ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 1.8 V ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 1.5 V ✓ ✓ ✓ ✓ ✓ ✓

PCI (3.3 V) ✓ ✓ ✓

PCI-X (3.3 V) ✓ ✓ ✓ ✓

LVDS, B-LVDS, M-LVDS ✓ ✓

LVPECL ✓

Note: Applies to all 30 k gate devices.

Table 7-18 • IGLOO and ProASIC3 I/O Default Attributes

I/O Standards
SLEW 

(output only)
OUT_DRIVE 
(output only)

SKEW 
(tribuf and 

bibuf 
only) RES_PULL

OUT_LOAD
(output 
only) COMBINE_REGISTER

LVTTL/LVCMOS 3.3 V See Table 7-14 
on page 203 to 
Table 7-16 on 

page 203.

See Table 7-14 
on page 203 to 
Table 7-16 on 

page 203.

Off None 35 pF – 
LVCMOS 2.5 V Off None 35 pF –
LVCMOS 2.5/5.0 V Off None 35 pF –
LVCMOS 1.8 V Off None 35 pF –
LVCMOS 1.5 V Off None 35 pF –
PCI (3.3 V) Off None 10 pF –
PCI-X (3.3 V) Off None 10 pF –
LVDS, B-LVDS, 
M-LVDS

Off None 0 pF –

LVPECL Off None 0 pF –
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I/O Software Control in Low Power Flash Devices
Implementing I/Os in Microsemi Software
Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro
builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and
Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool. 

Using SmartGen for I/O Configuration
The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero SoC.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 9-2. 

Figure 9-2 • SmartGen Catalog
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Security Support in Flash-Based Devices
The flash FPGAs listed in Table 12-1 support the security feature and the functions described in this
document. 

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 12-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 12-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 12-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf


Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1. 
If programming design content only, just perform sub-flow 2.

Figure 12-9 • Security Programming Flows
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Figure 12-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 12-11 • All Silicon Features Selected for Fusion
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17 – UJTAG Applications in Microsemi’s Low 
Power Flash Devices

Introduction
In Fusion, IGLOO, and ProASIC3 devices, there is bidirectional access from the JTAG port to the core
VersaTiles during normal operation of the device (Figure 17-1). User JTAG (UJTAG) is the ability for the
design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the
UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access
Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such
as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory
blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by
instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core
VersaTiles from the JTAG ports enables users to implement different applications using the TAP
Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few
application examples. However, the possible applications are not limited to what is presented in this
document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the
design. For detailed usage information, refer to the "Boundary Scan in Low Power Flash Devices"
section on page 357.

Figure 17-1 • Block Diagram of Using UJTAG to Read FlashROM Contents
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