
Microsemi Corporation - M1A3P1000L-1PQG208 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 147456

Number of I/O 154

Number of Gates 1000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 208-BFQFP

Supplier Device Package 208-PQFP (28x28)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/m1a3p1000l-1pqg208

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/m1a3p1000l-1pqg208-4492657
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide
Figure 1-11 • Efficient Long-Line Resources

Figure 1-12 • Very-Long-Line Resources

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Spans 1 VersaTile
Spans 2 VersaTiles
Spans 4 VersaTiles

Spans 1 VersaTile
Spans 2 VersaTiles

Spans 4 VersaTiles

VersaTile

High-Speed, Very-Long-Line Resources

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
 R

ing

Pad Ring

16×12 Block of VersaTiles

SRAM
Revision 4 19

Global Resources in Low Power Flash Devices
External I/O or Local signal as Clock Source
External I/O refers to regular I/O pins are labeled with the I/O convention IOuxwByVz. You can allow the
external I/O or internal signal to access the global. To allow the external I/O or internal signal to access
the global network, you need to instantiate the CLKINT macro. Refer to Figure 3-4 on page 51 for an
example illustration of the connections. Instead of using CLKINT, you can also use PDC to promote
signals from external I/O or internal signal to the global network. However, it may cause layout issues
because of synthesis logic replication. Refer to the "Global Promotion and Demotion Using PDC" section
on page 67 for details.

Using Global Macros in Synplicity
The Synplify® synthesis tool automatically inserts global buffers for nets with high fanout during
synthesis. By default, Synplicity® puts six global macros (CLKBUF or CLKINT) in the netlist, including
any global instantiation or PLL macro. Synplify always honors your global macro instantiation. If you have
a PLL (only primary output is used) in the design, Synplify adds five more global buffers in the netlist.
Synplify uses the following global counting rule to add global macros in the netlist:

1. CLKBUF: 1 global buffer
2. CLKINT: 1 global buffer
3. CLKDLY: 1 global buffer
4. PLL: 1 to 3 global buffers

– GLA, GLB, GLC, YB, and YC are counted as 1 buffer.
– GLB or YB is used or both are counted as 1 buffer.
– GLC or YC is used or both are counted as 1 buffer.

Figure 3-14 • CLKINT Macro

+

+

To Core

From FPGA core

GFA0

GFA1

GFA2

To global network

INBUF CLKINT

INBUF
66 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals.
When the number of globals in the design is greater than six, the Designer layout engine will
automatically assign additional globals to the quadrant global networks of the low power flash devices. If
the user wishes to decide which global signals should be assigned to chip globals (six available) and
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the

Figure 4-31 • Static Timing Analysis Using SmartTime
Revision 4 123

I/O Structures in IGLOO and ProASIC3 Devices
Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of IGLOO and ProASIC3 Devices 30K gate devices, all IGLOOe/ProASIC3E
devices: Compliant with two levels of staging (first:
GND; second: all other pins)
Other IGLOO/ProASIC3 devices: Compliant:
Option A – Two levels of staging (first: GND;
second: all other pins) together with bus switch on
the I/Os
Option B – Three levels of staging (first: GND;
second: supplies; third: all other pins)

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of IGLOO and ProASIC3 Devices 30K gate devices, all IGLOOe/ProASIC3E
devices: Compliant with two levels of staging (first:
GND; second: all other pins)
Other IGLOO/ProASIC3 devices: Compliant:
Option A – Two levels of staging (first: GND;
second: all other pins) together with bus switch on
the I/Os
Option B – Three levels of staging (first: GND;
second: supplies; third: all other pins)
190 Revision 4

I/O Structures in IGLOO and ProASIC3 Devices
• In Active and Static modes:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High
– Output buffers with pull-up, driven Low
– Output buffers with pull-down, driven High
– Tristate buffers with pull-up, driven Low
– Tristate buffers with pull-down, driven High

• In Flash*Freeze mode:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients.
All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device
Model (CDM).
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the off state, except when
transient voltage is significantly above VCCI or below GND levels.
In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and
cannot be switched off.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on
page 193 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.
192 Revision 4

I/O Structures in IGLOOe and ProASIC3E Devices
Figure 8-18 • Timing Diagram (bypasses skew circuit)

Figure 8-19 • Timing Diagram (with skew circuit selected)

EN (b1)

EN (b2)

ENABLE (r1)

Transmitter 1: ON

ENABLE (t2)

Transmitter 2: ON

ENABLE (t1)

Bus
Contention

Transmitter 1: OFF Transmitter 1: OFF

Transmitter 2: OFF

EN (b1)

EN (b2)

Transmitter 1: ON

ENABLE (t2)

Transmitter 2: ON Transmitter 2: OFF

ENABLE (t1)

Result: No Bus Contention

Transmitter 1: OFF Transmitter 1: OFF
238 Revision 4

9 – I/O Software Control in Low Power Flash
Devices

Fusion, IGLOO, and ProASIC3 I/Os provide more design flexibility, allowing the user to control specific
features by enabling certain I/O standards. Some features are selectable only for certain I/O standards,
whereas others are available for all I/O standards. For example, slew control is not supported by
differential I/O standards. Conversely, I/O register combining is supported by all I/O standards. For
detailed information about which I/O standards and features are available on each device and each I/O
type, refer to the I/O Structures section of the handbook for the device you are using.
Figure 9-1 shows the various points in the software design flow where a user can provide input or control
of the I/O selection and parameters. A detailed description is provided throughout this document.

Figure 9-1 • User I/O Assignment Flow Chart

Design Entry

1. I/O Macro
Using

SmartGen

2. I/O Buffer
Cell Schematic

Entry

3. Instantiating
I/O Library

Macro in HDL
Code

4. Generic
Buffer Using

1, 2, 3
Method

5. Synthesis

6. Compile
6.1 I/O

Assignments by
PDC Import

7. I/O Assignments by Multi-View Navigator (MVN)

I/O Standard Selection
for Generic I/O Macro

I/O Standards and
VREF Assignment by

I/O Bank Assigner

I/O Attribute Selection
for I/O Standards

8. Layout
and Other

Steps
Revision 4 251

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
258 Revision 4

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 9-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer.
Table 9-3 shows I/O assignment constraints supported in the PDC file.

Figure 9-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 9-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50
-vref 0.75

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank.

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin.

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
Revision 4 259

http://www.microsemi.com/soc/documents/libero_ug.pdf

DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 10-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 10-5 on page 277 through Figure 10-8 on page 280 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 10-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register
276 Revision 4

ProASIC3L FPGA Fabric User’s Guide
General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a
brief overview of those options. The next sections provide more detail on those options as they apply to
Microsemi FPGAs.

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of
such a device will be completely overwritten when it is reprogrammed. All Microsemi flash devices are
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to
the contents. Microsemi flash devices provide the option of disabling the reprogrammability for security
purposes. This combines the convenience of reprogrammability during design verification with the
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the
production floor that is used for programming FPGA devices. The devices are placed into a socket
mounted in a programming adapter module, and the appropriate electrical interface is applied. The
programmed device can then be placed on the board. A typical programmer, used during development,
programs a single device at a time and is referred to as a single-site engineering programmer.
With ISP, the device is already mounted onto the system printed circuit board when programming occurs.
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the
application requires it, the system can be designed to reprogram itself using a microprocessor, without
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming
hardware is available in order to program many devices in parallel. Microsemi In House Programming is
also available for this purpose.

Programming Features for Microsemi Devices
Flash Devices
The flash devices supplied by Microsemi are reprogrammable by either a generic device programmer or
ISP. Microsemi supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro
Lite, Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only)

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
Revision 4 289

ProASIC3L FPGA Fabric User’s Guide
Related Documents
Below is a list of related documents, their location on the Microsemi SoC Products Group website, and a
brief summary of each document.

Application Notes
Programming Antifuse Devices
http://www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf
Implementation of Security in Actel's ProASIC and ProASICPLUS Flash-Based FPGAs
http://www.microsemi.com/soc/documents/Flash_Security_AN.pdf

User’s Guides
FlashPro Programmers
FlashPro4,1 FlashPro3, FlashPro Lite, and FlashPro2

http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
FlashPro User's Guide
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
The FlashPro User’s Guide includes hardware and software setup, self-test instructions, use instructions,
and a troubleshooting / error message guide.

Silicon Sculptor 3 and Silicon Sculptor II
http://www.microsemi.com/soc/products/hardware/program_debug/ss/default.aspx

Other Documents
http://www.microsemi.com/soc/products/solutions/security/default.aspx#flashlock
The security resource center describes security in Microsemi Flash FPGAs.
Quality and Reliability Guide
http://www.microsemi.com/soc/documents/RelGuide.pdf
Programming and Functional Failure Guidelines
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf

1. FlashPro4 replaced FlashPro3 in Q1 2010.
2. FlashPro is no longer available.
Revision 4 297

http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/products/hardware/program_debug/ss/default.aspx
http://www.microsemi.com/soc/products/solutions/security/default.aspx#flashlock
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf
http://www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf
http://www.microsemi.com/soc/documents/RelGuide.pdf
http://www.microsemi.com/soc/documents/Flash_Security_AN.pdf
http://www.microsemi.com/soc/documents/Flash_Security_AN.pdf
http://www.microsemi.com/soc/documents/Flash_Security_AN.pdf
http://www.microsemi.com/soc/documents/RelGuide.pdf
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf

Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 12-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 12-6 • Security Options

Plaintext
Source File

AES
Encryption

Cipher Text
Source File

Public
Domain

AES Decryption Core

FlashROM Flash Blocks

Flash Device
A

pp
lic

at
io

n
3

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

1

FPGA Core
308 Revision 4

ProASIC3L FPGA Fabric User’s Guide
FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Microsemi Designer as an
aid to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 12-7 on page 309, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 12-7 on page 309, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only.
In Application 1, described in the "Application 1: Trusted Environment" section on page 309, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used.
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 309, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming.
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 310, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 321 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 327.
Revision 4 311

ProASIC3L FPGA Fabric User’s Guide
Related Documents

User’s Guides
FlashPro User's Guide
http://www.microsemi.com/soc/documents/flashpro_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

304

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 12-1 • Flash-Based
FPGAs.

302

v1.3
(October 2008)

The "Security Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

302

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 12-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

302

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 302
Revision 4 325

http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/flashpro_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
Board-Level Considerations
A bypass capacitor is required from VPUMP to GND for all low power flash devices during programming.
This bypass capacitor protects the devices from voltage spikes that may occur on the VPUMP supplies
during the erase and programming cycles. Refer to the "Pin Descriptions and Packaging" chapter of the
appropriate device datasheet for specific recommendations. For proper programming, 0.01 µF and 0.33
µF capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and
positioned as close to the FPGA pins as possible. The bypass capacitor must be placed within 2.5 cm of
the device pins.

Troubleshooting Signal Integrity
Symptoms of a Signal Integrity Problem
A signal integrity problem can manifest itself in many ways. The problem may show up as extra or
dropped bits during serial communication, changing the meaning of the communication. There is a
normal variation of threshold voltage and frequency response between parts even from the same lot.
Because of this, the effects of signal integrity may not always affect different devices on the same board
in the same way. Sometimes, replacing a device appears to make signal integrity problems go away, but
this is just masking the problem. Different parts on identical boards will exhibit the same problem sooner
or later. It is important to fix signal integrity problems early. Unless the signal integrity problems are
severe enough to completely block all communication between the device and the programmer, they
may show up as subtle problems. Some of the FlashPro4/3/3X exit codes that are caused by signal
integrity problems are listed below. Signal integrity problems are not the only possible cause of these

Note: *NC (FlashPro3/3X); Prog_Mode (FlashPro4). Prog_Mode on FlashPro4 is an output signal that goes High during
device programming and returns to Low when programming is complete. This signal can be used to drive a
system to provide a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can
run with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be programmed at
1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are programmed with a VCC core
voltage of 1.5 V.

Figure 13-6 • Board Layout and Programming Header Top View

VCC
VCCI

VJTAG

GND
TCK
TDO
TMS

VPUMP
TDI

C1 C2

TRST

1 TCK 2 GND
3 TDO 4 NC*
5 TMS 6 VJTAG
7 VPUMP 8 TRST
9 TDI 10 GND

Low Power
Flash Device

VCC from the target board

VJTAG from the target board
VCCI from the target board

Polarizing Notch

R R
Revision 4 337

ProASIC3L FPGA Fabric User’s Guide
UJTAG Port Usage
UIREG[7:0] hold the contents of the JTAG instruction register. The UIREG vector value is updated when
the TAP Controller state machine enters the Update_IR state. Instructions 16 to 127 are user-defined and
can be employed to encode multiple applications and commands within an application. Loading new
instructions into the UIREG vector requires users to send appropriate logic to TMS to put the TAP
Controller in a full IR cycle starting from the Select IR_Scan state and ending with the Update_IR state.
UTDI, UTDO, and UDRCK are directly connected to the JTAG TDI, TDO, and TCK ports, respectively.
The TDI input can be used to provide either data (TAP Controller in the Shift_DR state) or the new
contents of the instruction register (TAP Controller in the Shift_IR state).
UDRSH, UDRUPD, and UDRCAP are HIGH when the TAP Controller state machine is in the Shift_DR,
Update_DR, and Capture_DR states, respectively. Therefore, they act as flags to indicate the stages of
the data shift process. These flags are useful for applications in which blocks of data are shifted into the
design from JTAG pins. For example, an active UDRSH can indicate that UTDI contains the data
bitstream, and UDRUPD is a candidate for the end-of-data-stream flag.
As mentioned earlier, users should not connect the TDI, TDO, TCK, TMS, and TRST ports of the UJTAG
macro to any port or net of the design netlist. The Designer software will automatically handle the port
connection.

Figure 17-4 • TAP Controller State Diagram

Run_Test/
Idle0

Test_Logic_Reset1

0
1 Select_

DR_Scan

Update_DR

Exit2_DR

Pause_DR

Exit1_DR

Shift_DR

Capture_DR

Select_
IR_Scan

Update_IR

Exit2_IR

Pause_IR

Exit1_IR

Shift_IR

Capture_IR

0

0

00

0

0

1
0

0

00

0

0

0

11

1

1

1

1

1

0

1

11

1

11
Revision 4 367

ProASIC3L FPGA Fabric User’s Guide
Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 17-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 17-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value.

Figure 17-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 4 369

