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ProASIC3L FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 50 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 57. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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Global Resources in Low Power Flash Devices
Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above)
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ProASIC3L FPGA Fabric User’s Guide
Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Figure 4-7 • Clock Input Sources (30 k gates devices and below)

Notes:
1. Represents the global input pins. Globals have direct access to the clock conditioning block and are 

not routed via the FPGA fabric. Refer to the "User I/O Naming Conventions in I/O Structures" chapter 
of the appropriate device user’s guide. 

2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of a PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS/B-LVDS/M-LVDS/DDR) in

a relevant global pin location. 
3. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-8 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k 

gates devices and above)
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ProASIC3L FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
<31:29> OAMUX[2:0] GLA Output Select Selects from the VCO’s four phase outputs for 
GLA.

<28:24> OCDIV[4:0] Secondary 2 Output 
Divider

Sets the divider value for the GLC/YC outputs. 
Also known as divider w in Figure 4-20 on 
page 101. The divider value will be 
OCDIV[4:0] + 1.

<23:19> OBDIV[4:0] Secondary 1 Output 
Divider

Sets the divider value for the GLB/YB outputs. 
Also known as divider v in Figure 4-20 on 
page 101. The divider value will be 
OBDIV[4:0] + 1.

<18:14> OADIV[4:0] Primary Output Divider Sets the divider value for the GLA output. Also 
known as divider u in Figure 4-20 on 
page 101. The divider value will be 
OADIV[4:0] + 1.

<13:7> FBDIV[6:0] Feedback Divider Sets the divider value for the PLL core 
feedback. Also known as divider m in 
Figure 4-20 on page 101. The divider value 
will be FBDIV[6:0] + 1.   

<6:0> FINDIV[6:0] Input Divider Input Clock Divider (/n). Sets the divider value 
for the input delay on CLKA. The divider value 
will be FINDIV[6:0] + 1.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. AES decryption not supported in 30 k gate devices and smaller.
2. Flash*Freeze is supported in all IGLOO devices and the ProASIC3L devices.
Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview
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ProASIC3L FPGA Fabric User’s Guide
FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The
FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is
incremented every time a write operation is performed, and RADDR is incremented every time a read
operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal
to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and
RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and
write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data
words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool
translates them into bit addresses and configures these signals automatically. SmartGen configures the
AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In
a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a
write when the difference between the write address and the read address reaches 1,500 (there have
been at least 1,500 more writes than reads). It will stay asserted until the difference between the write
and read addresses drops below 1,500.   
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios
of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The
number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically
uses the proper values. To avoid halfwords being written or read, which could happen if different read
and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word
cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the
FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
The memory block can be configured as a FIFO by combining the basic memory block with dedicated
FIFO controller logic. The FIFO macro is named FIFO4KX18. Low power flash device RAM can be
configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths
can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and
the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each
macro cell in the "SRAM Features" section on page 153. The largest continuous configurable memory
area is equal to half the total memory available on the device, because the RAM is separated into two
groups, one on each side of the device. 
The SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks.
Cascading is accomplished using dedicated memory logic and does not consume user gates for depths
up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize
some user gates to multiplex the outputs.
Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy
instantiation into the design. Users of Libero SoC can create a symbol for the macro and incorporate it
into a design schematic.
Table 6-10 on page 163 shows the number of memory blocks required for each of the supported depth
and width memory configurations, and for each depth and width combination. For example, a 256-bit
deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be
stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM
block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory
block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-
port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two
deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.
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ProASIC3L FPGA Fabric User’s Guide
compatible, which means devices can operate at conventional PCI frequencies (33 MHz and 66 MHz).
PCI-X is more fault-tolerant than PCI. It also does not have programmable drive strength.

Voltage-Referenced Standards
I/Os using these standards are referenced to an external reference voltage (VREF) and are supported on
E devices only.

HSTL Class I and II (High-Speed Transceiver Logic)
These are general-purpose, high-speed 1.5 V bus standards (EIA/JESD 8-6) for signaling between
integrated circuits. The signaling range is 0 V to 1.5 V, and signals can be either single-ended or
differential. HSTL requires a differential amplifier input buffer and a push-pull output buffer. The reference
voltage (VREF) is 0.75 V. These standards are used in the memory bus interface with data switching
capability of up to 400 MHz. The other advantages of these standards are low power and fewer EMI
concerns.
HSTL has four classes, of which low power flash devices support Class I and II. These classes are
defined by standard EIA/JESD 8-6 from the Electronic Industries Alliance (EIA):

• Class I – Unterminated or symmetrically parallel-terminated
• Class II – Series-terminated
• Class III – Asymmetrically parallel-terminated
• Class IV – Asymmetrically double-parallel-terminated

SSTL2 Class I and II (Stub Series Terminated Logic 2.5 V)
These are general-purpose 2.5 V memory bus standards (JESD 8-9) for driving transmission lines,
designed specifically for driving the DDR SDRAM modules used in computer memory. SSTL2 requires a
differential amplifier input buffer and a push-pull output buffer. The reference voltage (VREF) is 1.25 V. 

SSTL3 Class I and II (Stub Series Terminated Logic 3.3 V)
These are general-purpose 3.3 V memory bus standards (JESD 8-8) for driving transmission lines.
SSTL3 requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage
(VREF) is 1.5 V. 

GTL 2.5 V (Gunning Transceiver Logic 2.5 V)
This is a low power standard (JESD 8.3) for electrical signals used in CMOS circuits that allows for low
electromagnetic interference at high transfer speeds. It has a voltage swing between 0.4 V and 1.2 V and
typically operates at speeds of between 20 and 40 MHz. VCCI must be connected to 2.5 V. The
reference voltage (VREF) is 0.8 V.

GTL 3.3 V (Gunning Transceiver Logic 3.3 V)
This is the same as GTL 2.5 V above, except VCCI must be connected to 3.3 V.

Figure 7-6 • SSTL and HSTL Topology
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ProASIC3L FPGA Fabric User’s Guide
IGLOO and ProASIC3 devices support output slew rate control: high and low. Microsemi recommends
the high slew rate option to minimize the propagation delay. This high-speed option may introduce noise
into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate
reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus
transients are expected. 

Output Drive
The output buffers of IGLOO and ProASIC3 devices can provide multiple drive strengths to meet signal
integrity requirements. The LVTTL and LVCMOS (except 1.2 V LVCMOS) standards have selectable
drive strengths. Other standards have a preset value. 
Drive strength should also be selected according to the design requirements and noise immunity of the
system.
The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V,
LVCMOS 2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O
standards have a high output slew rate by default.
For 30 k gate devices, refer to Table 7-14. For other ProASIC3 and IGLOO devices, refer to Table 7-15
through Table 7-16 on page 203 for more information about the slew rate and drive strength
specification. Refer to Table 7-4 on page 178 for I/O bank type definitions.
There will be a difference in timing between the Standard Plus I/O banks and the Advanced I/O banks.
Refer to the I/O timing tables in the datasheet for the standards supported by each device.

Table 7-14 • IGLOO and ProASIC3 Output Drive and Slew for Standard I/O Bank Type (for 30 k 
gate devices)

I/O Standards 2 mA 4 mA 6 mA 8 mA Slew
LVTTL/LVCMOS 3.3 V ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ ✓ ✓ High Low

LVCMOS 1.8 V ✓ ✓ – – High Low

LVCMOS 1.5 V ✓ – – – High Low

Table 7-15 • IGLOO and ProASIC3 Output Drive and Slew for Standard Plus I/O Bank Type
I/O Standards 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Slew
LVTTL ✓ ✓ ✓ ✓ ✓ ✓ High Low

LVCMOS 3.3 V ✓ ✓ ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ * ✓ ✓ * ✓ – High Low

LVCMOS 1.8 V ✓ ✓ ✓ ✓ – – High Low

LVCMOS 1.5 V ✓ ✓ – – – – High Low

Note: *Not available in Automotive devices. 

Table 7-16 • IGLOO and ProASIC3 Output Drive and Slew for Advanced I/O Bank Type
I/O Standards 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Slew
LVTTL ✓ ✓ ✓ ✓ ✓ ✓ ✓ High Low

LVCMOS 3.3 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ High Low

LVCMOS 2.5 V ✓ ✓ * ✓ ✓ * ✓ ✓ ✓ High Low

LVCMOS 2.5/5.0 V ✓ ✓ * ✓ ✓ * ✓ ✓ ✓ High Low

LVCMOS 1.8 V ✓ ✓ ✓ ✓ ✓ ✓ – High Low

LVCMOS 1.5 V ✓ ✓ ✓ ✓ ✓ – – High Low

Note: Not available in Automotive devices.
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Note: The 30 k gate devices do not support a PLL (VCOMPLF and VCCPLF pins).
Figure 7-19 • Naming Conventions of IGLOO and ProASIC3 Devices with Two I/O Banks – Top View 

Figure 7-20 • Naming Conventions of IGLOO and ProASIC3 Devices with Four I/O Banks – Top View
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
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ProASIC3L FPGA Fabric User’s Guide
– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 9-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.  

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer. 
Table 9-3 shows I/O assignment constraints supported in the PDC file.

Figure 9-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 9-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50 
-vref 0.75 

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank. 

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin. 

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
Revision 4 259

http://www.microsemi.com/soc/documents/libero_ug.pdf


I/O Software Control in Low Power Flash Devices
Assigning VREF Pins for a Bank
The user can use default pins for VREF. In this case, select the Use default pins for VREFs check box
(Figure 9-13). This option guarantees full VREF coverage of the bank. The equivalent PDC command is
as follows:
set_vref_default [bank name]

To be able to choose VREF pins, adequate VREF pins must be created to allow legal placement of the
compatible voltage-referenced I/Os. 
To assign VREF pins manually, the PDC command is as follows:
set_vref –bank [bank name] [package pin numbers]

For ChipPlanner/PinEditor to show the range of a VREF pin, perform the following steps:
1. Assign VCCI to a bank using MVN > Edit > I/O Bank Settings. 
2. Open ChipPlanner. Zoom in on an I/O package pin in that bank.
3. Highlight the pin and then right-click. Choose Use Pin for VREF.

Figure 9-13 • Selecting VREF Voltage for the I/O Bank

VREF for GTL+ 3.3 V
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Input Support for DDR
The basic structure to support a DDR input is shown in Figure 10-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 10-1 on page 271. New data is presented to the
output every half clock cycle. 
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 10-2 • DDR Input Register Support in Low Power Flash Devices
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DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 10-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 10-10 and
Figure 10-11 on page 283 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 10-9 • Design Example

Figure 10-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices
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17 – UJTAG Applications in Microsemi’s Low 
Power Flash Devices

Introduction
In Fusion, IGLOO, and ProASIC3 devices, there is bidirectional access from the JTAG port to the core
VersaTiles during normal operation of the device (Figure 17-1). User JTAG (UJTAG) is the ability for the
design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the
UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access
Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such
as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory
blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by
instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core
VersaTiles from the JTAG ports enables users to implement different applications using the TAP
Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few
application examples. However, the possible applications are not limited to what is presented in this
document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the
design. For detailed usage information, refer to the "Boundary Scan in Low Power Flash Devices"
section on page 357.

Figure 17-1 • Block Diagram of Using UJTAG to Read FlashROM Contents
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Power-Up/-Down Behavior of Low Power Flash Devices
Figure 18-5 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V2, IGLOO nano V2, 
IGLOO PLUS V2, and ProASIC3L Devices Running at VCC = 1.2 V ± 0.06 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs) 
but slower because VCCI/VCC are below 
specification. For the same reason, input 
buffers do not meet VIH/VIL levels, and 
output buffers do not meet VOH/VOL levels.
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VCC = VCCI + VT
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