
Microsemi Corporation - M1A3P1000L-PQ208 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 147456

Number of I/O 154

Number of Gates 1000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 208-BFQFP

Supplier Device Package 208-PQFP (28x28)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/m1a3p1000l-pq208

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/m1a3p1000l-pq208-4492716
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

FPGA Array Architecture in Low Power Flash Devices
Routing Architecture
The routing structure of low power flash devices is designed to provide high performance through a
flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources;
high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 1-10). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaTile global network.
The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire device (Figure 1-11 on page 19). Each VersaTile can drive signals onto
the efficient long-line resources, which can access every input of every VersaTile. Routing software
automatically inserts active buffers to limit loading effects.
The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 1-12 on page 19). Very long lines in low power
flash devices have been enhanced over those in previous ProASIC families. This provides a significant
performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or internal logic. These nets are typically used to distribute clocks, resets, and other high-
fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and
signals can be introduced at any junction. These can be employed hierarchically, with signals accessing
every input of every VersaTile. For more details on VersaNets, refer to the "Global Resources in Low
Power Flash Devices" section on page 47.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 1-10 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

L

L L

LL

L
Inputs

O
ut

pu
t Ultra-Fast Local Lines

(connects a VersaTile to the
adjacent VersaTile, I/O buffer,
or memory block)

L L L

Long Lines
18 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Figure 1-11 • Efficient Long-Line Resources

Figure 1-12 • Very-Long-Line Resources

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Spans 1 VersaTile
Spans 2 VersaTiles
Spans 4 VersaTiles

Spans 1 VersaTile
Spans 2 VersaTiles

Spans 4 VersaTiles

VersaTile

High-Speed, Very-Long-Line Resources

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
 R

ing

Pad Ring

16×12 Block of VersaTiles

SRAM
Revision 4 19

Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS,
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
32 Revision 4

Global Resources in Low Power Flash Devices
Table 3-5 • Globals/Spines/Rows for IGLOO PLUS Devices

IGLOO
PLUS
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per Tree

Total
Spines

per Device
VersaTiles

in Each Tree
Total

VersaTiles

Rows
in

Each
Spine

AGLP030 6 0 2 9 18 384* 792 12

AGLP060 6 12 4 9 36 384* 1,584 12

AGLP125 6 12 8 9 72 384* 3,120 12

Note: *Clock trees that are located at far left and far right will support more VersaTiles.

Table 3-6 • Globals/Spines/Rows for Fusion Devices

Fusion
Device

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in

Each
Tree

Total
VersaTiles

Rows
in

Each
Spine

AFS090 6 12 6 9 54 384 2,304 12

AFS250 6 12 8 9 72 768 6,144 24

AFS600 6 12 12 9 108 1,152 13,824 36

AFS1500 6 12 20 9 180 1,920 38,400 60
58 Revision 4

ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

48
Revision 4 75

ProASIC3L FPGA Fabric User’s Guide
Available I/O Standards

Global Synthesis Constraints
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3.
When more than six clocks are needed in the design, a user synthesis constraint attribute,
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in
detail.

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
Revision 4 93

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable
phase and more importantly the actual delay that is equivalent to the phase shift that can be
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.

Note: *For Fusion, bit <88:81> is also needed.
Figure 4-21 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
Revision 4 103

ProASIC3L FPGA Fabric User’s Guide
The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically,
allowing the user to adjust the delay elements appropriately to obtain the desired delays.

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings
by checking the log file:
Name : test_pll_delays
Family : ProASIC3E
Output Format : VHDL
Type : Static PLL
Input Freq(MHz) : 20.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 21
Feedback Mux Select : 2
XDLY Mux Select : No
Primary Freq(MHz) : 20.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 40.000
Use GLB : YES
Use YB : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
Revision 4 121

ProASIC3L FPGA Fabric User’s Guide
• Use quadrant global region assignments by finding the clock net associated with the CCC macro
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-33.

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment.
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven
CCC near a particular CCC location does not guarantee global assignments to the desired location. This
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore,
it is possible that the CCC connected to the clock input will be routed to a location other than the one
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip
global and quadrant global networks. Based on the clock assignment constraints for the chip global and
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report
an error and stop Layout.
The user must ensure that the constraints set to promote clock signals to quadrant global networks are
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more
accurate PLL output frequency results than those achievable with a single CCC. In addition, this
technique is useful when the user application requires the output clock of the PLL to be a multiple of the
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference
clock, as shown in Figure 4-34 on page 126.

Figure 4-33 • Quadrant Clock Assignment for a Global Net
Revision 4 125

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
140 Revision 4

ProASIC3L FPGA Fabric User’s Guide
GTL 2.5 V (Gunning Transceiver Logic 2.5 V)
This is a low power standard (JESD 8-3) for electrical signals used in CMOS circuits that allows for low
electromagnetic interference at high transfer speeds. It has a voltage swing between 0.4 V and 1.2 V and
typically operates at speeds of between 20 and 40 MHz. VCCI must be connected to 2.5 V. The
reference voltage (VREF) is 0.8 V.

GTL 3.3 V (Gunning Transceiver Logic 3.3 V)
This is the same as GTL 2.5 V above, except VCCI must be connected to 3.3 V.

GTL+ (Gunning Transceiver Logic Plus)
This is an enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a
differential amplifier input buffer and an open-drain output buffer. Even though the output is open-drain,
VCCI must be connected to either 2.5 V or 3.3 V. The reference voltage (VREF) is 1 V.

Differential Standards
These standards require two I/Os per signal (called a “signal pair”). Logic values are determined by the
potential difference between the lines, not with respect to ground. This is why differential drivers and
receivers have much better noise immunity than single-ended standards. The differential interface
standards offer higher performance and lower power consumption than their single-ended counterparts.
Two I/O pins are used for each data transfer channel. Both differential standards require resistor
termination.

LVPECL (Low-Voltage Positive Emitter Coupled Logic)
LVPECL requires that one data bit be carried through two signal lines; therefore, two pins are needed per
input or output. It also requires external resistor termination. The voltage swing between the two signal
lines is approximately 850 mV. When the power supply is +3.3 V, it is commonly referred to as Low-
Voltage PECL (LVPECL). Refer to the device datasheet for the full implementation of the LVPECL
transmitter and receiver.

LVDS (Low-Voltage Differential Signal)
LVDS is a moderate-speed differential signaling system, in which the transmitter generates two different
voltages that are compared at the receiver. LVDS uses a differential driver connected to a terminated
receiver through a constant-impedance transmission line. It requires that one data bit be carried through
two signal lines; therefore, the user will need two pins per input or output. It also requires external resistor
termination. The voltage swing between the two signal lines is approximately 350 mV. VCCI is 2.5 V. Low
power flash devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own
user specification. Refer to the device datasheet for the full implementation of the LVDS transmitter and
receiver.

Figure 8-8 • Differential Topology

VCCI

DEVICE 1

GND VREF

OUTn

OUTp

INn

INp VCCI

DEVICE 2

GND VREF
Revision 4 225

I/O Structures in IGLOOe and ProASIC3E Devices
Table 8-18 • Supported IGLOOe, ProASIC3L, and ProASIC3E I/O Standards and Corresponding VREF and VTT
Voltages

I/O Standard

Input/Output Supply
Voltage

(VMVTYP/VCCI_TYP)
Input Reference

Voltage (VREF_TYP)
Board Termination
Voltage (VTT_TYP)

LVTTL/ L VCMOS 3.3 V 3.30 V – –

LVCMOS 2.5 V 2.50 V – –

LVCMOS 2.5/5.0 V Input 2.50 V – –

LVCMOS 1.8 V 1.80 V – –

LVCMOS 1.5 V 1.50 V – –

PCI 3.3 V 3.30 V – –

PCI-X 3.3 V 3.30 V – –

GTL+ 3.3 V 3.30 V 1.00 V 1.50 V

GTL+ 2.5 V 2.50 V 1.00 V 1.50 V

GTL 3.3 V 3.30 V 0.80 V 1.20 V

GTL 2.5 V 2.50 V 0.80 V 1.20 V

HSTL Class I 1.50 V 0.75 V 0.75 V

HSTL Class II 1.50 V 0.75 V 0.75 V

SSTL3 Class I 3.30 V 1.50 V 1.50 V

SSTL3 Class II 3.30 V 1.50 V 1.50 V

SSTL2 Class I 2.50 V 1.25 V 1.25 V

SSTL2 Class II 2.50 V 1.25 V 1.25 V

LVDS, DDR LVDS, B-LVDS,
M-LVDS

2.50 V – –

LVPECL 3.30 V – –
244 Revision 4

ProASIC3L FPGA Fabric User’s Guide
The procedure is as follows:
1. Select the bank to which you want VCCI to be assigned from the Choose Bank list.
2. Select the I/O standards for that bank. If you select any standard, the tool will automatically show

all compatible standards that have a common VCCI voltage requirement.
3. Click Apply.
4. Repeat steps 1–3 to assign VCCI voltages to other banks. Refer to Figure 9-11 on page 263 to

find out how many I/O banks are needed for VCCI bank assignment.

Manually Assigning VREF Pins
Voltage-referenced inputs require an input reference voltage (VREF). The user must assign VREF pins
before running Layout. Before assigning a VREF pin, the user must set a VREF technology for the bank
to which the pin belongs.

VREF Rules for the Implementation of Voltage-Referenced I/O
Standards
The VREF rules are as follows:

1. Any I/O (except JTAG I/Os) can be used as a VREF pin.
2. One VREF pin can support up to 15 I/Os. It is recommended, but not required, that eight of them

be on one side and seven on the other side (in other words, all 15 can still be on one side of
VREF).

3. SSTL3 (I) and (II): Up to 40 I/Os per north or south bank in any position
4. LVPECL / GTL+ 3.3 V / GTL 3.3 V: Up to 48 I/Os per north or south bank in any position (not

applicable for IGLOO nano and ProASIC3 nano devices)
5. SSTL2 (I) and (II) / GTL+ 2.5 V / GTL 2.5 V: Up to 72 I/Os per north or south bank in any position
6. VREF minibanks partition rule: Each I/O bank is physically partitioned into VREF minibanks. The

VREF pins within a VREF minibank are interconnected internally, and consequently, only one
VREF voltage can be used within each VREF minibank. If a bank does not require a VREF signal,
the VREF pins of that bank are available as user I/Os.

7. The first VREF minibank includes all I/Os starting from one end of the bank to the first power triple
and eight more I/Os after the power triple. Therefore, the first VREF minibank may contain (0 + 8),
(2 + 8), (4 + 8), (6 + 8), or (8 + 8) I/Os.
The second VREF minibank is adjacent to the first VREF minibank and contains eight I/Os, a
power triple, and eight more I/Os after the triple. An analogous rule applies to all other VREF
minibanks but the last.
The last VREF minibank is adjacent to the previous one but contains eight I/Os, a power triple,
and all I/Os left at the end of the bank. This bank may also contain (8 + 0), (8 + 2), (8 + 4), (8 + 6),
or (8 + 8) available I/Os.
Example:
4 I/Os → Triple → 8 I/Os, 8 I/Os → Triple → 8 I/Os, 8 I/Os → Triple → 2 I/Os
That is, minibank A = (4 + 8) I/Os, minibank B = (8 + 8) I/Os, minibank C = (8 + 2) I/Os.

8. Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is not needed for
minibanks composed of output or tristated I/Os.

Assigning the VREF Voltage to a Bank
When importing the PDC file, the VREF voltage can be assigned to the I/O bank. The PDC command is
as follows:
set_iobank –vref [value]

Another method for assigning VREF is by using MVN > Edit > I/O Bank Settings (Figure 9-13 on
page 266).
Revision 4 265

DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 10-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 10-5 on page 277 through Figure 10-8 on page 280 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 10-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register
276 Revision 4

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 287 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 12-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
304 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
Revision 4 305

ProASIC3L FPGA Fabric User’s Guide
For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 12-14 and Figure 12-15 on

page 318. Click Next.

Table 12-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 12-14 • Programming IGLOO and ProASIC3 Security Settings Only
Revision 4 317

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 13-1 on page 331). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
330 Revision 4

17 – UJTAG Applications in Microsemi’s Low
Power Flash Devices

Introduction
In Fusion, IGLOO, and ProASIC3 devices, there is bidirectional access from the JTAG port to the core
VersaTiles during normal operation of the device (Figure 17-1). User JTAG (UJTAG) is the ability for the
design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the
UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access
Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such
as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory
blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by
instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core
VersaTiles from the JTAG ports enables users to implement different applications using the TAP
Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few
application examples. However, the possible applications are not limited to what is presented in this
document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the
design. For detailed usage information, refer to the "Boundary Scan in Low Power Flash Devices"
section on page 357.

Figure 17-1 • Block Diagram of Using UJTAG to Read FlashROM Contents

FROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr[6:0]

Data[7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG[7:0]

Control

UJTAG
Address Generation and

Data Serlialization
Revision 4 363

ProASIC3L FPGA Fabric User’s Guide
sleep 32
static 23
summary 23

product support
customer service 387
email 387
My Cases 388
outside the U.S. 388
technical support 387
website 387

programmers 291
device support 294

programming
AES encryption 319
basics 289
features 289
file header definition 323
flash and antifuse 291
flash devices 289
glossary 324
guidelines for flash programming 295
header pin numbers 336
microprocessor 349
power supplies 329
security 313
solution 334
solutions 293
voltage 329
volume services 292

programming support 287

R
RAM

memory block consumption 163
remote upgrade via TCP/IP 354
routing structure 18

S
security 330

architecture 303
encrypted programming 354
examples 308
features 304
FlashLock 307
FlashROM 137
FlashROM use models 311
in programmable logic 301
overview 301

shutdown mode 32
context save and restore 34

signal integrity problem 337
silicon testing 370
sleep mode 32

context save and restore 34
SmartGen 170
spine architecture 57
spine assignment 68
SRAM

features 153
initializing 164
software support 170
usage 157

STAPL player 351
STAPL vs. DirectC 353
static mode 23
switching circuit 344

verification 344
synthesizing 258

T
TAP controller state machine 357, 366
tech support

ITAR 388
My Cases 388
outside the U.S. 388

technical support 387
transient current

VCC 376
VCCI 376

transient current, power-up/-down 375

U
UJTAG

CCC dynamic reconfiguration 368
fine tuning 369
macro 365
operation 366
port usage 367
use to read FlashROM contents 363

ULSICC 40
ultra-fast local lines 18

V
variable aspect ratio and cascading 161
VersaNet global networks 49
VersaTile 15
very-long-line resources 19
ViewDraw 257
VREF pins

manually assigning 265

W
web-based technical support 387
Revision 4 391

