
Microsemi Corporation - M1A3P600L-1FG256 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 110592

Number of I/O 177

Number of Gates 600000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 256-LBGA

Supplier Device Package 256-FPBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/m1a3p600l-1fg256

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/m1a3p600l-1fg256-4493930
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide
IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode
In IGLOO nano and IGLOO PLUS devices, users have multiple options in how to configure I/Os during
Flash*Freeze mode:

1. Hold the previous state
2. Set I/O pad to weak pull-up or pull-down
3. Tristate I/O pads

The I/O configuration must be configured by the user in the I/O Attribute Editor or in a PDC constraint file,
and can be done on a pin-by-pin basis. The output hold feature will hold the output in the last registered
state, using the I/O pad weak pull-up or pull-down resistor when the FF pin is asserted. When inputs are
configured with the hold feature enabled, the FPGA core side of the input will hold the last valid state of
the input pad before the device entered Flash*Freeze mode. The input pad can be driven to any value,
configured as tristate, or configured with the weak pull-up or pull-down I/O pad feature during
Flash*Freeze mode without affecting the hold state. If the weak pull-up or pull-down feature is used
without the output hold feature, the input and output pads will maintain the configured weak pull-up or
pull-down status during Flash*Freeze mode and normal operation. If a fixed weak pull-up or pull-down is
defined on an output buffer or as bidirectional in output mode, and a hold state is also defined for the
same pin, the pin will be configured in hold state mode during Flash*Freeze mode. During normal
operation, the pin will be configured with the predefined weak pull-up or pull-down. Any I/Os that do not
use the hold state or I/O pad weak pull-up or pull-down features will be tristated during Flash*Freeze
mode and the FPGA core will be driven High by inputs. Inputs that are tristated during Flash*Freeze
mode may be left floating without any reliability concern or impact to power consumption.
Table 2-6 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed.

Table 2-6 • IGLOO nano and IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State

Buffer Type Hold State
I/O Pad Weak
Pull-Up/-Down

I/O Pad State in
Flash*Freeze Mode

Input Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

Output Enabled "Don't care" Weak pull to hold state

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Bidirectional / Tristate
Buffer

E = 0
(input/tristate)

Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

E = 1 (output) Enabled "Don't care" Weak pull to hold state 3

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Notes:
1. Internal core logic driven by this input buffer will be set to the value this I/O had when entering

Flash*Freeze mode.
2. Internal core logic driven by this input buffer will be tied High as long as the device is in Flash*Freeze

mode.
3. For bidirectional buffers: Internal core logic driven by the input portion of the bidirectional buffer will

be set to the hold state.
Revision 4 29

ProASIC3L FPGA Fabric User’s Guide
Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Chip Global Region

C
LK

B
U

F
pl

ac
ed

 a
t o

ne
 o

f t
he

 G
F

pi
n

lo
ca

tio
ns

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Quadrant Global Region

CLKBUF placed at one of the GA pin locations
Revision 4 65

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself,
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see
Figure 4-12 for an example illustration of the connections, shown in red).

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input
reference clock of the CCC block.

Figure 4-12 • Illustration of Core Logic Usage

PLL or CLKDLY
Macro

Routed Clock
(from FPGA Core)

Gmn*

Gmn*

Gmn*

To Core

IOuxwByVz*

To Global (or Local)
Routing Network

From Internal
Signals

CLKA

PLLINT

Multiplexer
Tree

_
+

_
+

Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin
92 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals.
When the number of globals in the design is greater than six, the Designer layout engine will
automatically assign additional globals to the quadrant global networks of the low power flash devices. If
the user wishes to decide which global signals should be assigned to chip globals (six available) and
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the

Figure 4-31 • Static Timing Analysis Using SmartTime
Revision 4 123

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off
during normal device operation via the POWERDOWN port (see Table 4-3 on page 84).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets.
When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications
specified in the datasheets. User applications should always ensure the PLL power supply is powered
from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is
provided in Figure 4-38. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply
and ground.
Microsemi strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed
close to the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is
recommended for low-frequency noise and should be placed farther away due to its large physical size.
Microsemi recommends that a 6.8 µH inductor be placed between the supply source and the capacitors
to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled
so the VCCPLx and VCOMPLx planes have the minimum separation possible, thus generating a good-
quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND
• Digi-Key part number: BC1252TR-ND

Figure 4-38 • Decoupling Scheme for One PLL (should be replicated for each PLL used)

IGLOO/e or
ProASIC3/E

Device

Power
Supply

VCCPLx

VCOMPLx

10 nF 100 nF 10 μF
128 Revision 4

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

6 – SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices

Introduction
As design complexity grows, greater demands are placed upon an FPGA's embedded memory. Fusion,
IGLOO, and ProASIC3 devices provide the flexibility of true dual-port and two-port SRAM blocks. The
embedded memory, along with built-in, dedicated FIFO control logic, can be used to create cascading
RAM blocks and FIFOs without using additional logic gates.
IGLOO, IGLOO PLUS, and ProASIC3L FPGAs contain an additional feature that allows the device to be
put in a low power mode called Flash*Freeze. In this mode, the core draws minimal power (on the order
of 2 to 127 µW) and still retains values on the embedded SRAM/FIFO and registers. Flash*Freeze
technology allows the user to switch to Active mode on demand, thus simplifying power management
and the use of SRAM/FIFOs.

Device Architecture
The low power flash devices feature up to 504 kbits of RAM in 4,608-bit blocks (Figure 6-1 on page 148
and Figure 6-2 on page 149). The total embedded SRAM for each device can be found in the
datasheets. These memory blocks are arranged along the top and bottom of the device to allow better
access from the core and I/O (in some devices, they are only available on the north side of the device).
Every RAM block has a flexible, hardwired, embedded FIFO controller, enabling the user to implement
efficient FIFOs without sacrificing user gates.
In the IGLOO and ProASIC3 families of devices, the following memories are supported:

• 30 k gate devices and smaller do not support SRAM and FIFO.
• 60 k and 125 k gate devices support memories on the north side of the device only.
• 250 k devices and larger support memories on the north and south sides of the device.

In Fusion devices, the following memories are supported:
• AFS090 and AFS250 support memories on the north side of the device only.
• AFS600 and AFS1500 support memories on the north and south sides of the device.
Revision 4 147

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n),

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable(test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
168 Revision 4

7 – I/O Structures in IGLOO and ProASIC3 Devices

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V,
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO,® ProASIC3®L, and ProASIC3 families
support Standard, Standard Plus, and Advanced I/Os.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. Libero SoC software provides an easy way to implement
I/Os that will result in robust I/O design.
This document first describes the two different I/O types in terms of the standards and features they
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 7-1 • DDR Configured I/O Block Logical Representation

Input
Register

E = Enable PinA

Y

PAD

1 2

3

4

5

6

OCE

ICE

ICE

Input
Register

Input
Register

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

Pull-Up/-Down
Resistor Control

Signal Drive Strength
and Slew Rate Control

Output
Register

Output
Register

To FPGA Core

From FPGA Core

Output
Enable

Register
OCE

I/O / CLR or I/O / PRE / OCE

I/O / Q0

I/O / Q1

I/O / ICLK

I/O / D0

I/O / D1 / ICE

I/O / OCLK

I/O / OE

Scan

Scan
Scan
Revision 4 175

I/O Structures in IGLOO and ProASIC3 Devices
I/O Register Combining
Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using
the internal register from the core, the user has the option of using these registers for faster clock-to-out
timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural
rules must be met. Provided these rules are met, the user can enable register combining globally during
Compile (as shown in the "Compiling the Design" section on page 261).
This feature is supported by all I/O standards.

Rules for Registered I/O Function
1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be

considered on that pin.
2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or

preset function:
– If one of the registers has a CLR pin, all the other registers that are candidates for combining

in the I/O must have a CLR pin.
– If one of the registers has a PRE pin, all the other registers that are candidates for combining

in the I/O must have a PRE pin.
– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are

candidates for combining must have neither a CLR nor a PRE pin.
– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. Registers connected to an I/O on the Output and Output Enable pins must have the same clock
and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while maintaining the
output as-is. This can be achieved by using PDC commands as follows:
set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
IGLOO and ProASIC3 devices support optional weak pull-up and pull-down resistors on each I/O pin.
When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled
down, it is connected to GND. Refer to the datasheet for more information.
For low power applications, configuration of the pull-up or pull-down of the I/O can be used to set the I/O
to a known state while the device is in Flash*Freeze mode. Refer to the "Flash*Freeze Technology and
Low Power Modes in IGLOO and ProASIC3L Devices" chapter of the IGLOO FPGA Fabric User’s Guide
or ProASIC3L FPGA Fabric User’s Guide for more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic Low to logic High or vice versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing.
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. Slew rate control is
available for LVTTL, LVCMOS, and PCI-X I/O standards. The other I/O standards have a preset slew
value.
The slew rate can be implemented by using a PDC command (Table 7-5 on page 179), setting it "High"
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate
value is "High."
202 Revision 4

http://www.microsemi.com/soc/documents/IGLOO_UG.pdf
http://www.microsemi.com/soc/documents/PA3L_UG.pdf

ProASIC3L FPGA Fabric User’s Guide
Note: The 30 k gate devices do not support a PLL (VCOMPLF and VCCPLF pins).
Figure 7-19 • Naming Conventions of IGLOO and ProASIC3 Devices with Two I/O Banks – Top View

Figure 7-20 • Naming Conventions of IGLOO and ProASIC3 Devices with Four I/O Banks – Top View

CCC
"A"

CCC
"E"

CCC/PLL
"F"

CCC
"B"

CCC
"D"

CCC
"C"

AGL030/A3P030

AGL060/A3P060

AGL125/A3P125

GND

VCC
GND

VCCIB1
VCC
GND
VCCIB0

Bank 1

Bank 1

Bank 0

Bank 0

Bank 1

Bank 0

VCOMPLF
VCCPLF

GND
VCC

VCCIB1
GND

GND
VCC
VCCIB0
GNDVMV1

GNDQ
GND

G
N

D
V

C
C

IB
1

V
C

C
IB

1
V

C
C

V
C

C
IB

1
V

C
C

G
N

D

V
M

V
1

G
N

D
Q

G
N

D

TC
K

TD
I

TM
S

VJTAG
TRST
TDO
VPUMP
GND

GND
GNDQ
VMV0

G
N

D

V
C

C

G
N

D

V
C

C
I

V
C

C
I

V
C

C
V

C
C

I

G
N

D

V
M

V
0

G
N

D
Q

A3P250
A3P400
A3P600

A3P1000

GND

Vcc
GND

VCCIB3 Bank 3

Bank 3

Bank 1

Bank 1

Bank 2

Bank 0

VCOMPLF
VCCPLF

GND
VCC

VCCIB3
GND

VMV3

GNDQ
GND

G
N

D
V

C
C

I

V
C

C
I

V
C

C

V
C

C
I

V
C

C
G

N
D

V
M

V
2

G
N

D
Q

G
N

D

TC
K

TD
I

TM
S

VJTAG
TRST
TDO
VPUMP
GND

GND
VCC
VCCIB1
GND

VCC
GND
VCCIB1

GND
GNDQ
VMV1

V
C

C
V

C
C

IB
0

G
N

D

V
C

C
V

C
C

IB
0

G
N

D

V
C

C
IB

0
G

N
D

V
M

V
0

G
N

D
Q

CCC
"A"

CCC
"E"

CCC/PLL
"F"

CCC
"B"

CCC
"D"

CCC
"C"
Revision 4 207

I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed.
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint.

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 9-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
260 Revision 4

I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

253

June 2011 Figure 9-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

254

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section:
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

265

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

252

The notes for Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

253

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

252

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

252

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 9-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

253
270 Revision 4

10 – DDR for Microsemi’s Low Power Flash
Devices

Introduction
The I/Os in Fusion, IGLOO, and ProASIC3 devices support Double Data Rate (DDR) mode. In this mode,
new data is present on every transition (or clock edge) of the clock signal. This mode doubles the data
transfer rate compared with Single Data Rate (SDR) mode, where new data is present on one transition
(or clock edge) of the clock signal. Low power flash devices have DDR circuitry built into the I/O tiles.
I/Os are configured to be DDR receivers or transmitters by instantiating the appropriate special macros
(examples shown in Figure 10-4 on page 276 and Figure 10-5 on page 277) and buffers (DDR_OUT or
DDR_REG) in the RTL design. This document discusses the options the user can choose to configure
the I/Os in this mode and how to instantiate them in the design.

Double Data Rate (DDR) Architecture
Low power flash devices support 350 MHz DDR inputs and outputs. In DDR mode, new data is present
on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making them very efficient for implementing very high-speed systems. High-speed DDR
interfaces can be implemented using LVDS (not applicable for IGLOO nano and ProASIC3 nano
devices). In IGLOOe, ProASIC3E, AFS600, and AFS1500 devices, DDR interfaces can also be
implemented using the HSTL, SSTL, and LVPECL I/O standards. The DDR feature is primarily
implemented in the FPGA core periphery and is not tied to a specific I/O technology or limited to any I/O
standard.

Figure 10-1 • DDR Support in Low Power Flash Devices

D QR

QF

CLR

PAD Y

INBUF_SSTL2_I DDR_REG

PAD

CLK

CLR

D PAD
DR Q

CLR

DF

DataR

DataF

OUTBUF_SSTL3_IDDR_OUT
Revision 4 271

ProASIC3L FPGA Fabric User’s Guide
FlashLock
Additional Options for IGLOO and ProASIC3 Devices
The user also has the option of prohibiting Write operations to the FPGA array but allowing Verify
operations on the FPGA array and/or Read operations on the FlashROM without the use of the
FlashLock Pass Key. This option provides the user the freedom of verifying the FPGA array and/or
reading the FlashROM contents after the device is programmed, without having to provide the FlashLock
Pass Key. The user can incorporate AES encryption on the programming files to better enhance the level
of security used.

Permanent Security Setting Options
In applications where a permanent lock is not desired, yet the security settings should not be modifiable,
IGLOO and ProASIC3 devices can accommodate this requirement.
This application is particularly useful in cases where a device is located at a remote location and must be
reprogrammed with a design or data update. Refer to the "Application 3: Nontrusted Environment—Field
Updates/Upgrades" section on page 310 for further discussion and examples of how this can be
achieved.
The user must be careful when considering the Permanent FlashLock or Permanent Security Settings
option. Once the design is programmed with the permanent settings, it is not possible to reconfigure the
security settings already employed on the device. Therefore, exercise careful consideration before
programming permanent settings.

Permanent FlashLock
The purpose of the permanent lock feature is to provide the benefits of the highest level of security to
IGLOO and ProASIC3 devices. If selected, the permanent FlashLock feature will create a permanent
barrier, preventing any access to the contents of the device. This is achieved by permanently disabling
Write and Verify access to the array, and Write and Read access to the FlashROM. After permanently
locking the device, it has been effectively rendered one-time-programmable. This feature is useful if the
intended applications do not require design or system updates to the device.

Figure 12-5 • Example Application Scenario Using AES in Fusion Devices

Designer
Software

Programming
File Generation

with AES
Encryption

Fusion

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium /
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core FBs
Revision 4 307

ProASIC3L FPGA Fabric User’s Guide
Application 1: Trusted Environment
As illustrated in Figure 12-7, this application allows the programming of devices at design locations
where research and development take place. Therefore, encryption is not necessary and is optional to
the user. This is often a secure way to protect the design, since the design program files are not sent
elsewhere. In situations where production programming is not available at the design location,
programming centers (such as Microsemi In-House Programming) provide a way of programming
designs at an alternative, secure, and trusted location. In this scenario, the user generates a STAPL
programming file from the Designer software in plaintext format, containing information on the entire
design or the portion of the design to be programmed. The user can choose to employ the FlashLock
Pass Key feature with the design. Once the design is programmed to unprogrammed devices, the design
is protected by this FlashLock Pass Key. If no future programming is needed, the user can consider
permanently securing the IGLOO and ProASIC3 device, as discussed in the "Permanent FlashLock"
section on page 307.

Application 2: Nontrusted Environment—Unsecured Location
Often, programming of devices is not performed in the same location as actual design implementation, to
reduce manufacturing cost. Overseas programming centers and contract manufacturers are examples of
this scenario.
To achieve security in this case, the AES key and the FlashLock Pass Key can be initially programmed
in-house (trusted environment). This is done by generating a programming file with only the security
settings and no design contents. The design FPGA core, FlashROM, and (for Fusion) FB contents are
generated in a separate programming file. This programming file must be set with the same AES key that
was used to program to the device previously so the device will correctly decrypt this encrypted
programming file. As a result, the encrypted design content programming file can be safely sent off-site
to nontrusted programming locations for design programming. Figure 12-7 shows a more detailed flow
for this application.

Notes:
1. Programmed portion indicated with dark gray.
2. Programming of FBs applies to Fusion only.
Figure 12-7 • Application 2: Device Programming in a Nontrusted Environment

Trusted Environment

Nontrusted Manufacturing Environment

Flash DeviceAES and/or
Pass Key
Protected
Programming File

FPGA/FlashROM/FBs
Contents

Security Settings

Generates Design
Contents Encrypted
with AES

Generates and Programs Security Settings Only
(programming of the security keys)

Programs Design
Contents to Devices

Ships Devices
to Manufacturer

Sends File(s)
to Manufacturer

OEM
Customers

Returns Programmed
Devices to Vendor

Ships Programmed
Devices to End Customer

Flash Device

Flash Device

OEM

FPGA/FlashROM/FBs

Security Settings*

FPGA/FlashROM/FBs

Security Settings
Revision 4 309

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
July 2010
(continued)

The "Chain Integrity Test Error Analyze Chain Failure" section was renamed to the
"Scan Chain Failure" section, and the Analyze Chain command was changed to
Scan Chain. It was noted that occasionally a faulty programmer can cause scan
chain failures.

338

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

331

v1.4
(December 2008)

The "ISP Architecture" section was revised to include information about core
voltage for IGLOO V2 and ProASIC3L devices, as well as 50 mV increments
allowable in Designer software.

327

IGLOO nano and ProASIC3 nano devices were added to Table 13-1 • Flash-Based
FPGAs Supporting ISP.

328

A second capacitor was added to Figure 13-6 • Board Layout and Programming
Header Top View.

337

v1.3
(October 2008)

The "ISP Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

328

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 13-1 • Flash-
Based FPGAs Supporting ISP:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

328

v1.1
(March 2008)

The "ISP Architecture" section was updated to included the IGLOO PLUS family in
the discussion of family-specific support. The text, "When 1.2 V is used, the device
can be reprogrammed in-system at 1.5 V only," was revised to state, "Although the
device can operate at 1.2 V core voltage, the device can only be reprogrammed
when all supplies (VCC, VCCI, and VJTAG) are at 1.5 V."

327

The "ISP Support in Flash-Based Devices" section and Table 13-1 • Flash-Based
FPGAs Supporting ISP were updated to include the IGLOO PLUS family. The
"IGLOO Terminology" section and "ProASIC3 Terminology" section are new.

328

The "Security" section was updated to mention that 15 k gate devices do not have a
built-in 128-bit decryption core.

330

Table 13-2 • Power Supplies was revised to remove the Normal Operation column
and add a table note stating, "All supply voltages should be at 1.5 V or higher,
regardless of the setting during normal operation."

329

The "ISP Programming Header Information" section was revised to change
FP3-26PIN-ADAPTER to FP3-10PIN-ADAPTER-KIT. Table 13-3 • Programming
Header Ordering Codes was updated with the same change, as well as adding the
part number FFSD-05-D-06.00-01-N, a 10-pin cable with 50-mil-pitch sockets.

335

The "Board-Level Considerations" section was updated to describe connecting two
capacitors in parallel across VPUMP and GND for proper programming.

337

v1.0
(January 2008)

Information was added to the "Programming Voltage (VPUMP) and VJTAG" section
about the JTAG interface pin.

329

51900055-2/7.06 ACTgen was changed to SmartGen. N/A

In Figure 13-6 • Board Layout and Programming Header Top View, the order of the
text was changed to:
VJTAG from the target board
VCCI from the target board
VCC from the target board

337

Date Changes Page
340 Revision 4

Microprocessor Programming of Microsemi’s Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

September 2012 The "Security" section was modified to clarify that Microsemi does not support
read-back of FPGA core-programmed data (SAR 41235).

354

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 15-1 • Flash-
Based FPGAs.

350

v1.3
(October 2008)

The "Microprocessor Programming Support in Flash Devices" section was
revised to include new families and make the information more concise.

350

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 15-1 •
Flash-Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

350

v1.1
(March 2008)

The "Microprocessor Programming Support in Flash Devices" section was
updated to include information on the IGLOO PLUS family. The "IGLOO
Terminology" section and "ProASIC3 Terminology" section are new.

350
356 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 17-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 17-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value.

Figure 17-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 4 369

ProASIC3L FPGA Fabric User’s Guide
SRAM Initialization
Users can also initialize embedded SRAMs of the low power flash devices. The initialization of the
embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is
imported using the TAP Controller. Similar functionality is available in ProASICPLUS devices using JTAG.
The guidelines for implementation and design examples are given in the RAM Initialization and ROM
Emulation in ProASICPLUS Devices application note.
SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process
should be done at each power-up if necessary.

FlashROM Read-Back Using JTAG
The low power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted
into eight 128-bit pages. For more information on FlashROM, refer to the "FlashROM in Microsemi’s Low
Power Flash Devices" section on page 133. The contents of FlashROM are available to the VersaTiles
during normal operation through a read operation. As a result, the UJTAG macro can be used to provide
the FlashROM contents to the JTAG port during normal operation. Figure 17-7 illustrates a simple block
diagram of using UJTAG to read the contents of FlashROM during normal operation.
The FlashROM read address can be provided from outside the FPGA through the TDI input or can be
generated internally using the core logic. In either case, data serialization logic is required (Figure 17-7)
and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in
parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial
data out of the serialization block should be performed while the TAP is in UDRSH mode. The
coordination between TCK and the data shift procedure can be done using the TAP state machine by
monitoring UDRSH, UDRCAP, and UDRUPD.

Figure 17-7 • Block Diagram of Using UJTAG to Read FlashROM Contents

FROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr[6:0]

Data[7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG[7:0]

Control

UJTAG
Address Generation and

Data Serlialization
Revision 4 371

http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf

