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ProASIC3L FPGA Fabric User’s Guide
Device Overview
Low power flash devices consist of multiple distinct programmable architectural features (Figure 1-5 on
page 13 through Figure 1-7 on page 14):

• FPGA fabric/core (VersaTiles)
• Routing and clock resources (VersaNets)
• FlashROM
• Dedicated SRAM and/or FIFO 

– 30 k gate and smaller device densities do not support SRAM or FIFO.
– Automotive devices do not support FIFO operation.

• I/O structures
• Flash*Freeze technology and low power modes

Notes: * Bank 0 for the 30 k devices
† Flash*Freeze mode is supported on IGLOO devices.

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O Banks (applies to 10 k and 
30 k device densities, excluding IGLOO PLUS devices)
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Global Resources in Low Power Flash Devices
3. Occasionally, the synthesis tool assigns a global macro to clock nets, even though the fanout is
significantly less than other asynchronous signals. Select Demote global nets whose fanout is
less than and enter a reasonable value for fanouts. This frees up some global networks from the
signals that have very low fanouts. This can also be done using PDC.

4. Use a local clock network for the signals that do not need to go to the whole chip but should have
low skew. This local clock network assignment can only be done using PDC.

5. Assign the I/O buffer using MVN if you have fixed I/O assignment. As shown in Figure 3-10 on
page 61, there are three sets of global pins that have a hardwired connection to each global
network. Do not try to put multiple CLKBUF macros in these three sets of global pins. For
example, do not assign two CLKBUFs to GAA0x and GAA2x pins. 

6. You must click Commit at the end of MVN assignment. This runs the pre-layout checker and
checks the validity of global assignment.

7. Always run Compile with the Keep existing physical constraints option on. This uses the
quadrant clock network assignment in the MVN assignment and checks if you have the desired
signals on the global networks.

8. Run Layout and check the timing.

Figure 3-18 • Globals Management GUI in Designer
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SmartGen also allows the user to select the various delays and phase shift values necessary to adjust 
the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). 
SmartGen allows the user to select the input clock source. SmartGen automatically instantiates the 
special macro, PLLINT, when needed. 

Global Input Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations 
available to connect to a CCC functional block or to a global / quadrant global network. Figure 4-7 on 
page 88 and Figure 4-8 on page 88 show the detailed architecture of each global input structure for 30 k 
gate devices and below, as well as 60 k gate devices and above, respectively. For 60 k gate devices and 
above (Figure 4-7 on page 88), if the single-ended I/O standard is chosen, there is flexibility to choose 
one of the global input pads (the first, second, and fourth input). Once chosen, the other I/O locations are 
used as regular I/Os. If the differential I/O standard is chosen (not applicable for IGLOO nano and 
ProASIC3 nano devices), the first and second inputs are considered as paired, and the third input is 
paired with a regular I/O. 
The user then has the choice of selecting one of the two sets to be used as the clock input source to the 
CCC functional block. There is also the option to allow an internal clock signal to feed the global network 
or the CCC functional block. A multiplexer tree selects the appropriate global input for routing to the 
desired location. Note that the global I/O pads do not need to feed the global network; they can also be 
used as regular I/O pads. 

Note: Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically 
configured based on the user's required frequencies.

Figure 4-6 • CCC with PLL Block
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ProASIC3L FPGA Fabric User’s Guide
compatible, which means devices can operate at conventional PCI frequencies (33 MHz and 66 MHz).
PCI-X is more fault-tolerant than PCI. It also does not have programmable drive strength.

Voltage-Referenced Standards
I/Os using these standards are referenced to an external reference voltage (VREF) and are supported on
E devices only.

HSTL Class I and II (High-Speed Transceiver Logic)
These are general-purpose, high-speed 1.5 V bus standards (EIA/JESD 8-6) for signaling between
integrated circuits. The signaling range is 0 V to 1.5 V, and signals can be either single-ended or
differential. HSTL requires a differential amplifier input buffer and a push-pull output buffer. The reference
voltage (VREF) is 0.75 V. These standards are used in the memory bus interface with data switching
capability of up to 400 MHz. The other advantages of these standards are low power and fewer EMI
concerns.
HSTL has four classes, of which low power flash devices support Class I and II. These classes are
defined by standard EIA/JESD 8-6 from the Electronic Industries Alliance (EIA):

• Class I – Unterminated or symmetrically parallel-terminated
• Class II – Series-terminated
• Class III – Asymmetrically parallel-terminated
• Class IV – Asymmetrically double-parallel-terminated

SSTL2 Class I and II (Stub Series Terminated Logic 2.5 V)
These are general-purpose 2.5 V memory bus standards (JESD 8-9) for driving transmission lines,
designed specifically for driving the DDR SDRAM modules used in computer memory. SSTL2 requires a
differential amplifier input buffer and a push-pull output buffer. The reference voltage (VREF) is 1.25 V. 

SSTL3 Class I and II (Stub Series Terminated Logic 3.3 V)
These are general-purpose 3.3 V memory bus standards (JESD 8-8) for driving transmission lines.
SSTL3 requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage
(VREF) is 1.5 V. 

GTL 2.5 V (Gunning Transceiver Logic 2.5 V)
This is a low power standard (JESD 8.3) for electrical signals used in CMOS circuits that allows for low
electromagnetic interference at high transfer speeds. It has a voltage swing between 0.4 V and 1.2 V and
typically operates at speeds of between 20 and 40 MHz. VCCI must be connected to 2.5 V. The
reference voltage (VREF) is 0.8 V.

GTL 3.3 V (Gunning Transceiver Logic 3.3 V)
This is the same as GTL 2.5 V above, except VCCI must be connected to 3.3 V.

Figure 7-6 • SSTL and HSTL Topology
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IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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Selectable Skew between Output Buffer Enable and Disable Times
Low power flash devices have a configurable skew block in the output buffer circuitry that can be enabled
to delay output buffer assertion without affecting deassertion time. Since this skew block is only available
for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is
added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for
detailed timing diagrams and descriptions.
The skew feature is available for all I/O standards.
This feature can be implemented by using a PDC command (Table 7-5 on page 179) or by selecting a
check box in the I/O Attribute Editor in Designer. The check box is cleared by default.
The configurable skew block is used to delay output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 7-13 • Block Diagram of Output Enable Path

Figure 7-14 • Timing Diagram (option 1: bypasses skew circuit)
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Figure 7-17 • Timing Diagram (bypasses skew circuit)

Figure 7-18 • Timing Diagram (with skew circuit selected)
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I/O Structures in IGLOO and ProASIC3 Devices
Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins
must be shorted to each other on the board. This will prevent unwanted current draw from the power
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 2 and EQ 3).

Ground bounce noise voltage = L(GND) × di/dt
EQ 2

VCCI dip noise voltage = L(VCCI) × di/dt
EQ 3

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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I/O Structures in IGLOO and ProASIC3 Devices
Related Documents

Application Notes
Board-Level Considerations
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User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com.soc/documents/libero_ug.pdf
IGLOO, Fusion, and ProASIC3 Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.  

Date Change Page

August 2012 Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 38215).

175, 181

AGL015 and A3P015 were added to Table 7-2 • Supported I/O Standards. 1.2 V
was added under single-ended I/O standards. LVCMOS 1.2 was added to
Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards (SAR
38096).

177 

Figure 7-4 • Simplified I/O Buffer Circuitry and Table 7-7 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3EL and RT
ProASIC3 devices (SAR 39666).

183, 188

The following sentence is incorrect and was removed from the "LVCMOS (Low-
Voltage CMOS)" section (SAR 40191): 
LVCMOS 2.5 V for the 30 k gate devices has a clamp diode to VCCI, but for all
other devices there is no clamp diode.

184

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

208, 210

June 2011 Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 •
DDR Configured I/O Block Logical Representation were revised so that the
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but
instead on the branch of the CLR/PRE signal (SAR 26052).

175, 181

Table 7-1 • Flash-Based FPGAs was revised to remove RT ProASIC3 and add
Military ProASIC3/EL in its place (SAR 31824, 31825).

176

The "Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3" section was revised.
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR
20983).

177
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Architecture

I/O Tile
The I/O tile provides a flexible, programmable structure for implementing a large number of I/O 
standards. In addition, the registers available in the I/O tile can be used to support high-performance 
register inputs and outputs, with register enable if desired (Figure 8-3). The registers can also be used to 
support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "DDR for 
Microsemi’s Low Power Flash Devices" section on page 271 for more information). 
As depicted in Figure 8-3, all I/O registers share one CLR port. The output register and output enable 
register share one CLK port.

Figure 8-3 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOOe and ProASIC3E Devices
Solution 3
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used 
for clamping, and the voltage must be limited by the bus switch, as shown in Figure 8-12. Relying on the 
diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 8-12 • Solution 3
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Power-Up Behavior 
Low power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for 
power-up and power-down. This eliminates extra board components for power-up sequencing, such as a 
power-up sequencer.
During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O 
buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the 
user-selected I/O macros. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section 
on page 373 for details. 

Drive Strength
Low power flash devices have up to seven programmable output drive strengths. The user can select the 
drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro, 
such as OUTBUF_S_12 (slew = low, out_drive = 12 mA).
The maximum available drive strength is 24 mA per I/O. Though no I/O should be forced to source or 
sink more than 24 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS 
model for maximum source/sink current) during signal transition (AC current). Every device package has 
its own power dissipation limit; hence, power calculation must be performed accurately to determine how 
much current can be tolerated per I/O within that limit.

I/O Interfacing 
Low power flash devices are 5 V–input– and 5 V–output–tolerant if certain I/O standards are selected 
(refer to the "5 V Input and Output Tolerance" section on page 232). Along with other low-voltage I/O 
macros, this 5 V tolerance makes these devices suitable for many types of board component interfacing.
Table 8-19 shows some high-level interfacing examples using low power flash devices. 

Table 8-19 • High-Level Interface Examples

Interface

Clock I/O

Type Frequency Type Signals In Signals Out Data I/O

GM Src Sync 125 MHz LVTTL 8 8 125 Mbps

TBI Src Sync 125 MHz LVTTL 10 10 125 Mbps

XSBI Src Sync 644 MHz LVDS 16 16 644 Mbps

XGMI Src Sync DDR 156 MHz HSTL1 32 32 312 Mbps

FlexBus 3 Sys Sync 104 MHz LVTTL ≤ 32 ≤ 32 ≤ 104

Pos-PHY3/SPI-3 Sys Sync 104 LVTTL 8,16,32 8,16,32 ≤ 104 Mbps

FlexBus 4/SPI-4.1 Src Sync 200 MHz HSTL1 16,64 16,64 200 Mbps

Pos-PHY4/SPI-4.2 Src Sync DDR ≥ 311 MHz LVDS 16 16 ≥ 622 Mbps

SFI-4.1 Src Sync 622 MHz LVDS 16 16 622 Mbps

CSIX L1 Sys Sync ≤ 250 MHz HSTL1 32,64,96,128 32,64,96,128 ≤ 250 Mbps

Hyper Transport Sys Sync DDR ≤ 800 MHz LVDS 2,4,8,16 2,4,8,16 ≤ 1.6 Gbps

Rapid I/O Parallel Sys Sync DDR 250 MHz – 1 GHz LVDS 8,16 8,16 ≤ 2 Gbps

Star Fabric CDR LVDS 4 4 622 Mbps

Note: Sys Sync = System Synchronous Clocking, Src Sync = Source Synchronous Clocking, and CDR = Clock and 
Data Recovery.
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DDR for Microsemi’s Low Power Flash Devices
Transmit Register
(continued)

Tristate 
Buffer

Normal  Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12,16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

PCI/PCI-X Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Bidirectional 
Buffer

Normal Enable Polarity Low/high (low default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

Enable Polarity Low/high (low default)

Pull-Up/-Down None (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Enable Polarity Low/high (low default)

Pull-Up None (default)

PCI/PCI-X None

Enable Polarity Low/high (low default)

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

Enable Polarity Low/high (low default)

HSTL Class I / II (I default)

Enable Polarity Low/high (low default)

SSTL2/SSTL3 Class I / II (I default)

Enable Polarity Low/high (low default)

Table 10-2 • DDR I/O Options (continued)

DDR Register 
Type I/O Type I/O Standard Sub-Options Comments

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
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Verilog
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output  QR, QF;

wire Y;    

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));    

endmodule

Figure 10-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices
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Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Microsemi Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 12-3 on page 304 and Figure 12-4 on
page 306 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication 
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming. 
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted. 
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 12-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices 
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD
instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading
into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the OE and
output BSR will be undefined; however, the input BSR will be defined as long as it is connected and
being used. For JTAG timing information on setup, hold, and fall times, refer to the FlashPro User’s
Guide.

ISP Support in Flash-Based Devices
The flash FPGAs listed in Table 13-1 support the ISP feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 13-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 13-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 13-1 • Flash-Based FPGAs Supporting ISP

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

SmartFusion SmartFusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
microcontroller subsystem (MSS) which includes programmable analog and
an ARM® Cortex™-M3 hard processor and flash memory in a monolithic
device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

In Figure 14-4, the TRST signal and the VCC core voltage signal are labeled. As TRST is pulled to
ground, the core voltage is observed to switch from 1.5 V to 1.2 V. The observed fall time is
approximately 2 ms. 

DirectC
The above analysis is based on FlashPro3, but there are other solutions to ISP, such as DirectC. DirectC
is a microprocessor program that can be run in-system to program Microsemi flash devices. For
FlashPro3, TRST is the most convenient control signal to use for the recommended circuit. However, for
DirectC, users may use any signal to control the FET. For example, the DirectC code can be edited so
that a separate non-JTAG signal can be asserted from the microcontroller that signals the board that it is
about to start programming the device. After asserting the N-Channel Digital FET control signal, the
programming algorithm must allow sufficient time for the supply to rise to 1.5 V before initiating DirectC
programming. As seen in Figure 14-3 on page 345, 50 ms is adequate time. Depending on the size of
the PCB and the capacitance on the VCC supply, results may vary from system to system. Microsemi
recommends using a conservative value for the wait time to make sure that the VCC core voltage is at
the right level.

Conclusion
For applications using IGLOO and ProASIC3L low power FPGAs and taking advantage of the low core
voltage power supplies with less than 1.5 V operation, there must be a way for the core voltage to switch
from 1.2 V (or other voltage) to 1.5 V, which is required during in-system programming. The circuit
explained in this document illustrates one simple, cost-effective way of handling this requirement. A
JTAG signal from the FlashPro3 programmer allows the circuit to sense when programming is in
progress, enabling it to switch to the correct core voltage. 

Figure 14-4 • TRST Toggled LOW
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useless to the thief. To learn more about the low power flash devices’ security features, refer to the
"Security in Low Power Flash Devices" section on page 301.

Conclusion
The Fusion, IGLOO, and ProASIC3 FPGAs are ideal for applications that require field upgrades. The
single-chip devices save board space by eliminating the need for EEPROM. The built-in AES with MAC
enables transmission of programming data over any network without fear of design theft. Fusion, IGLOO,
and ProASIC3 FPGAs are IEEE 1532–compliant and support STAPL, making the target programming
software easy to implement. 

Figure 15-5 • ProASIC3 Device Encryption Flow
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UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Operation
There are a few basic functions of the UJTAG macro that users must understand before designing with it.
The most important fundamental concept of the UJTAG design is its connection with the TAP Controller
state machine. 

TAP Controller State Machine
The 16 states of the TAP Controller state machine are shown in Figure 17-4 on page 367. The 1s and 0s,
shown adjacent to the state transitions, represent the TMS values that must be present at the time of a
rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction
register operates; in the states that contain the letters "DR," the test data register operates. The TAP
Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest
of the test logic. 
On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset
the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the
TAP state changes at the rising edge of TCK, based on the value of TMS. 

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.
Figure 17-3 • Connectivity Method of UJTAG Macro
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