
Microsemi Corporation - M1A3P600L-FG256I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 110592

Number of I/O 177

Number of Gates 600000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 256-LBGA

Supplier Device Package 256-FPBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/m1a3p600l-fg256i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/m1a3p600l-fg256i-4493693
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


ProASIC3L FPGA Fabric User’s Guide
Figure 2-1 shows the concept of FF pin control in Flash*Freeze mode type 1. 

Figure 2-2 shows the timing diagram for entering and exiting Flash*Freeze mode type 1.

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin

User Design

IGLOO, IGLOO PLUS, IGLOO nano,   
ProASIC3L, or RT ProASIC3 Device

Flash*Freeze
Mode

Enables Entering
Flash*Freeze Mode

Flash*Freeze
Signal

Flash*Freeze
Technology

Flash*Freeze (FF) Pin

INBUF_FF
Flash*Freeze
Mode Control

AND

To FPGA Core or Floating

1

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram

Normal
Operation

Flash*Freeze
Mode

Normal
Operation

Flash*Freeze Pin

t = 1 μs t = 1 μs
Revision 4 25



Global Resources in Low Power Flash Devices
Figure 3-5 shows more detailed global input connections. It shows the global input pins connection to the
northwest quadrant global networks. Each global buffer, as well as the PLL reference clock, can be
driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core

Note: Differential inputs are not supported for IGLOO nano or ProASIC3 nano devices.
Figure 3-5 • Global I/O Overview

+

+

Source for CCC
(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
macro, as appropriate. To Core

Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.

2

52 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 50. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture. 
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 50). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 60. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO 
Devices

Chip
Globals 

Quadrant
Globals 

(4×3)
Clock
Trees 

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree 
Total

VersaTiles 

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
Revision 4 57



ProASIC3L FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c  –type quadrant UL
assign_local_clock –net QCLK2_c  –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET       Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout  Type          Name
--------------------------
256     CLK_NET       Net   : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256     CLK_NET       Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design 
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 77. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 52). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.   
Revision 4 73



Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 87. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 102 for a description of the programmable delay types used for the PLL. 
Also refer to Table 4-14 on page 110 for Programmable Delay Type 1 step delay values, and Table 4-15 
on page 110 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can 
be configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 87 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
82 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Available I/O Standards

Global Synthesis Constraints 
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3. 
When more than six clocks are needed in the design, a user synthesis constraint attribute, 
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred 
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of 
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and 
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in 
detail.

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5 

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18 

CLKBUF_LVCMOS15 

CLKBUF_PCI 

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the 

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
Revision 4 93

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf


Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dividers n and m (the input divider and feedback divider, respectively) provide integer frequency division 
factors from 1 to 128. The output dividers u, v, and w provide integer division factors from 1 to 32. 
Frequency scaling of the reference clock CLKA is performed according to the following formulas:

fGLA = fCLKA × m / (n × u) – GLA Primary PLL Output Clock

EQ 4-1

fGLB = fYB = fCLKA × m / (n × v) – GLB Secondary 1 PLL Output Clock(s)

EQ 4-2

fGLC = fYC = fCLKA × m / (n × w) – GLC Secondary 2 PLL Output Clock(s)

EQ 4-3
SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes 
automatically setting the division factors to achieve the closest possible match to the requested 
frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies 
are interdependent and related according to the following formula:

fGLA = fGLB × (v / u) = fGLC × (w / u)

EQ 4-4

Clock Delay Adjustment
There are a total of seven configurable delay elements implemented in the PLL architecture. 
Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System 
Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from 
0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively 
advance the output signal from the PLL core with respect to the reference clock. Thus, the System and 
Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be 
independently bypassed if necessary.
The remaining five delays perform traditional time delay and are located at each of the outputs of the 
PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global 
multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value, as given in 
Table 4-7.

The additional YB and YC signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps 
increments (typical). This is the same delay value as the CLKDLY macro. It is similar to CLKDLY, which 
bypasses the PLL core just to take advantage of the phase adjustment option with the delay value.
The following parameters must be taken into consideration to achieve minimum delay at the outputs 
(GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC 
outputs, core outputs and global network output delays, and the feedback path delay. The feedback path 
delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core 
output. The routing delays are determined from back-annotated simulation and are configuration-
dependent. 

Table 4-7 • Delay Values in Libero SoC Software per Device Family

Device Typical Starting Values Increments Ending Value

ProASIC3 200 ps 0 to 735 ps 200 ps 6.735 ns

IGLOO/ProASIC3L 1.5 V 360 ps 0 to 1.610 ns 360 ps 12.410 ns

IGLOO/ProASIC3L 1.2 V 580 ps 0 to 2.880 ns 580 ps 20.280 ns
102 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Figure 4-22 • CCC Block Control Bits – Graphical Representation of Assignments

/w D

C<37:35>

C<28:24>

Internal

C<60:56>

GLCD

C<70:66>

YC

CLKC

CLKB

Internal
C<55:51>

C<23:19>
C<34:32>

GLBD

D YB/v
C<44:40>

C<45>
C<39:38>

D

D

(0)

(1)

(1)

(2)

C<13:7>

C<6:0>

/m

/n
CLKA

PLL
Core

(4)

(2)

(7)
(6)
(5)

C<18:14>

C<31:29>

C<50:46>

Internal

GLAD

/u
M
U
X
A

0°

90°

270°
180°

M
U
X
B

M
U
X
C

Revision 4 105





FlashROM in Microsemi’s Low Power Flash Devices
Programming and Accessing FlashROM
The FlashROM content can only be programmed via JTAG, but it can be read back selectively through
the JTAG programming interface, the UJTAG interface, or via direct FPGA core addressing. The pages of
the FlashROM can be made secure to prevent read-back via JTAG. In that case, read-back on these
secured pages is only possible by the FPGA core fabric or via UJTAG. 
A 7-bit address from the FPGA core defines which of the eight pages (three MSBs) is being read, and
which of the 16 bytes within the selected page (four LSBs) are being read. The FlashROM content can
be read on a random basis; the access time is 10 ns for a device supporting commercial specifications.
The FPGA core will be powered down during writing of the FlashROM content. FPGA power-down during
FlashROM programming is managed on-chip, and FPGA core functionality is not available during
programming of the FlashROM. Table 5-2 summarizes various FlashROM access scenarios. 

Figure 5-6 shows the accessing of the FlashROM using the UJTAG macro. This is similar to FPGA core
access, where the 7-bit address defines which of the eight pages (three MSBs) is being read and which
of the 16 bytes within the selected page (four LSBs) are being read. Refer to the "UJTAG Applications in
Microsemi’s Low Power Flash Devices" section on page 363 for details on using the UJTAG macro to
read the FlashROM.
Figure 5-7 on page 139 and Figure 5-8 on page 139 show the FlashROM access from the JTAG port.
The FlashROM content can be read on a random basis. The three-bit address defines which page is
being read or updated.

Table 5-2 • FlashROM Read/Write Capabilities by Access Mode

Access Mode FlashROM Read FlashROM Write 

JTAG Yes Yes 

UJTAG Yes No 

FPGA core Yes No 

Figure 5-6 • Block Diagram of Using UJTAG to Read FlashROM Contents

FlashROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr [6:0]

Data [7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG [7:0]

Control

UJTAG
Address Generation and

Data Serialization
138 Revision 4



ProASIC3L FPGA Fabric User’s Guide
DEVICE_INFO displays the FlashROM content, serial number, Design Name, and checksum, as shown
below:
EXPORT IDCODE[32] = 123261CF
EXPORT SILSIG[32] = 00000000
User information : 
CHECKSUM: 61A0
Design Name:        TOP
Programming Method: STAPL
Algorithm Version: 1
Programmer: UNKNOWN
=========================================
FlashROM Information : 
EXPORT Region_7_0[128] = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
=========================================
Security Setting :
Encrypted FlashROM Programming Enabled.
Encrypted FPGA Array Programming Enabled.
=========================================

The Libero SoC file manager recognizes the UFC and MEM files and displays them in the appropriate
view. Libero SoC also recognizes the multiple programming files if you choose the option to generate
multiple files for multiple FlashROM contents in Designer. These features enable a user-friendly flow for
the FlashROM generation and programming in Libero SoC.

Custom Serialization Using FlashROM
You can use FlashROM for device serialization or inventory control by using the Auto Inc region or Read
From File region. FlashPoint will automatically generate the serial number sequence for the Auto Inc
region with the Start Value, Max Value, and Step Value provided. If you have a unique serial number
generation scheme that you prefer, the Read From File region allows you to import the file with your
serial number scheme programmed into the region. See the FlashPro User's Guide for custom
serialization file format information.
The following steps describe how to perform device serialization or inventory control using FlashROM:

1. Generate FlashROM using SmartGen. From the Properties section in the FlashROM Settings
dialog box, select the Auto Inc or Read From File region. For the Auto Inc region, specify the
desired step value. You will not be able to modify this value in the FlashPoint software.

2. Go through the regular design flow and finish place-and-route. 
3. Select Programming File in Designer and open Generate Programming File (Figure 5-12 on

page 144).
4. Click Program FlashROM, browse to the UFC file, and click Next. The FlashROM Settings

window appears, as shown in Figure 5-13 on page 144. 
5. Select the FlashROM page you want to program and the data value for the configured regions.

The STAPL file generated will contain only the data that targets the selected FlashROM page.
6. Modify properties for the serialization. 

– For the Auto Inc region, specify the Start and Max values.
– For the Read From File region, select the file name of the custom serialization file. 

7. Select the FlashROM programming file type you want to generate from the two options below:
– Single programming file for all devices: generates one programming file with all FlashROM

values.
– One programming file per device: generates a separate programming file for each FlashROM

value.
8. Enter the number of devices you want to program and generate the required programming file.
9. Open the programming software and load the programming file. The programming software,

FlashPro3 and Silicon Sculptor II, supports the device serialization feature. If, for some reason,
the device fails to program a part during serialization, the software allows you to reuse or skip the
serial data. Refer to the FlashPro User’s Guide for details.
Revision 4 145

http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/flashpro_ug.pdf


SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n), 

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable( test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
168 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.

Figure 7-12 • Solution 4

Solution 4

2.5 V5.5 V 2.5 V

Requires one board resistor.
Available for LVCMOS 2.5 V / 5.0 V.

I/O Input

Rext

On-Chip
Clamp
Diode
Revision 4 197



ProASIC3L FPGA Fabric User’s Guide
I/O Bank Structure
Low power flash device I/Os are divided into multiple technology banks. The number of banks is device-
dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and 
IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own VCCI power 
supply pin. Multiple I/O standards can co-exist within a single I/O bank.
In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into VREF minibanks. 
These are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All I/Os in a given 
minibank share a common VREF line (only one VREF pin is needed per VREF minibank). Therefore, if 
an I/O in a VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able 
to use the voltage assigned to that pin. If the location of the VREF pin is selected manually in the 
software, the user must satisfy VREF rules (refer to the "I/O Software Control in Low Power Flash 
Devices" section on page 251). If the user does not pick the VREF pin manually, the software 
automatically assigns it.
Figure 8-4 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed 
from the Designer place-and-route tool’s MultiView Navigator (MVN).

Low power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).
The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are 
used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer 
and two I/O logic blocks (auxiliary and main logic). 
Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends 
on the different-size dies. Refer to the "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section on 
page 215 for an illustration of the minibank structure.
Figure 8-5 on page 222 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal 
(OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains 
ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device 
ESD specification) to GND. This transistor also serves as an output pull-down resistor.
Each output buffer also contains programmable slew rate, drive strength, programmable power-up state 
(pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash 
switches (not shown in Figure 8-5 on page 222) are programmed by user selections in the software to 
activate different I/O features.

Figure 8-4 • Snapshot of an I/O Tile

{I/O Pad/Buffer I/O Logic (assigned)

N Side
(assigned)

P Side
(unassigned)

Diffio Tile

Minibank

Other
Minibanks
Revision 4 221



Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those 
available are listed below: 

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Microsemi in-house programming
– Programming centers 

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The 
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to 
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving 
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Microsemi’s Low Power Flash 
Devices Using FlashPro4/3/3X" section on page 327 for more information.
Using an external programmer and a cable, the device can be programmed through a header on 
the system board. In Microsemi SoC Products Group documentation, this is referred to as 
external ISP. Microsemi provides FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to 
perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for 
ProASIC and ProASICPLUS® families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon 
Sculptor II and Silicon Sculptor 3 can be used for programming ProASIC and ProASICPLUS 
devices by using an adapter module (part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The 

programming algorithms and hardware are available from Microsemi. The only hardware 
required on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG 
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Microsemi’s Low Power 
Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in 
memory and use the microprocessor to perform the programming. In Microsemi documentation, 
this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA 
programming file must be stored in memory on the board. Programming voltages must also be 
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer 

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of 

getting and/or storing the data is needed; a system interface to the device must be designed; 
and the low-level API to the programming firmware must be written and linked into the code 
provided by Microsemi. While there are benefits to this methodology, serious thought and 
planning should go into the decision.
290 Revision 4



Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 12-13).
Click Finish to generate the STAPL programming file for the design. 

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 309,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 12-4 and Table 12-5 on page 317.

Figure 12-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 12-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
316 Revision 4



In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
signal deactivated, which also has the effect of disabling the input buffers. The SAMPLE/PRELOAD
instruction captures the status of pads in parallel and shifts them out as new data is shifted in for loading
into the Boundary Scan Register (BSR). When the device is in an unprogrammed state, the OE and
output BSR will be undefined; however, the input BSR will be defined as long as it is connected and
being used. For JTAG timing information on setup, hold, and fall times, refer to the FlashPro User’s
Guide.

ISP Support in Flash-Based Devices
The flash FPGAs listed in Table 13-1 support the ISP feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 13-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 13-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 13-1 • Flash-Based FPGAs Supporting ISP

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

SmartFusion SmartFusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
microcontroller subsystem (MSS) which includes programmable analog and
an ARM® Cortex™-M3 hard processor and flash memory in a monolithic
device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
328 Revision 4

http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/SmartFusion_DS.pdf 
http://www.microsemi.com/soc/documents/ProASIC_DS.pdf
http://www.microsemi.com/soc/documents/ProASICPlus_DS.pdf
http://www.microsemi.com/soc/documents/ProASICPlus_DS.pdf


16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine

1

TEST_LOGIC_RESET

RUN_TEST_IDLE SELECT_DR

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1 0

1

0

0
0

1

0

1

0

1

Revision 4 357



ProASIC3L FPGA Fabric User’s Guide
Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 17-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 17-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value. 

Figure 17-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 4 369



ProASIC3L FPGA Fabric User’s Guide
I/O Behavior at Power-Up/-Down
This section discusses the behavior of device I/Os, used and unused, during power-up/-down of VCC and 
VCCI. As mentioned earlier, VMVx and VCCIBx are tied together, and therefore, inputs and outputs are 
powered up/down at the same time. 

I/O State during Power-Up/-Down
This section discusses the characteristics of I/O behavior during device power-up and power-down. 
Before the start of power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up 
until the last voltage supply (VCC or VCCI) is powered to its functional level (power supply functional 
levels are discussed in the "Power-Up to Functional Time" section on page 378). After the last supply 
reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the 
output buffer. Similarly, the input buffers will pass the external logic into the FPGA fabric once the last 
supply reaches the functional level. The behavior of user I/Os is independent of the VCC and VCCI 
sequence or the state of other voltage supplies of the FPGA (VPUMP and VJTAG). Figure 18-2 shows 
the output buffer driving HIGH and its behavior during power-up with 10 kΩ external pull-down. In 
Figure 18-2, VCC is powered first, and VCCI is powered 5 ms after VCC. Figure 18-3 on page 378 
shows the state of the I/O when VCCI is powered about 5 ms before VCC. In the circuitry shown in 
Figure 18-3 on page 378, the output is externally pulled down. 
During power-down, device I/Os become tristated once the first power supply (VCC or VCCI) drops 
below its brownout voltage level. The I/O behavior during power-down is also independent of voltage 
supply sequencing.  

Figure 18-2 • I/O State when VCC Is Powered before VCCI 
Revision 4 377


