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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Flash*Freeze Technology and Low Power Modes
Flash Families Support the Flash*Freeze Feature
The low power flash FPGAs listed in Table 2-1 support the Flash*Freeze feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 2-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 2-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 2-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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ProASIC3L FPGA Fabric User’s Guide
Using Sleep and Shutdown Modes in the System
Depending on the power supply and the components used in an application, there are many ways to
power on or off the power supplies connected to the device. For example, Figure 2-6 shows how a
microprocessor can be used to control a power FET. Microsemi recommends that power FETs with low
resistance be used to perform the switching action. 

Figure 2-7 shows how a microprocessor can be used with a voltage regulator’s shutdown pin to turn on
or off the power supplies connected to the device.

Power-Up/-Down Behavior
By design, all IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 I/Os are in tristate
mode before device power-up. The I/Os remain tristated until the last voltage supply (VCC or VCCI) is
powered to its activation level. After the last supply reaches its functional level, the outputs exit the
tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is
independent of the VCC and VCCI sequence or the state of other voltage supplies of the FPGA (VPUMP
and VJTAG). During power-down, device I/Os become tristated once the first power supply (VCC or VCCI)
drops below its deactivation voltage level. The I/O behavior during power-down is also independent of
voltage supply sequencing. 
Figure 2-8 on page 34 shows a timing diagram when the VCC power supply crosses the activation and
deactivation trip points in a typical application when the VCC power supply ramp-rate is 100 µs (ramping
from 0 V to 1.5 V in this example). This is the timing diagram for the FPGA entering and exiting Sleep
mode, as this function is dependent on powering VCC down or up. Depending on the ramp-rate of the

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET

Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage Regulator
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ProASIC3L FPGA Fabric User’s Guide
Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 3-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 3-8 on page 60 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted. 
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal. 

Figure 3-7 • Chip Global Aggregation
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Global Resources in Low Power Flash Devices
Global Macro and Placement Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations
available to connect to a global / quadrant global network. For 60K gate devices and above, if the
single-ended I/O standard is chosen, there is flexibility to choose one of the global input pads (the first,
second, and fourth input). Once chosen, the other I/O locations are used as regular I/Os. If the differential
I/O standard is chosen, the first and second inputs are considered as paired, and the third input is paired
with a regular I/O. The user then has the choice of selecting one of the two sets to be used as the global
input source. There is also the option to allow an internal clock signal to feed the global network. A
multiplexer tree selects the appropriate global input for routing to the desired location. Note that the
global I/O pads do not need to feed the global network; they can also be used as regular I/O pads.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly
accesses the global network. These global input pins have designated pin locations and are indicated
with the I/O naming convention Gmn (m refers to any one of the positions where the global buffers is
available, and n refers to any one of the three global input MUXes and the pin number of the associated
global location, m). Choosing this option provides the benefit of directly connecting to the global buffers,
which provides less delay. See Figure 3-11 for an example illustration of the connections, shown in red. If
a CLKBUF macro is initiated, the clock input can be placed at one of nine dedicated global input pin
locations: GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2. Note that the
placement of the global will determine whether you are using chip global or quadrant global. For
example, if the CLKBIF is placed in one of the GF pin locations, it will use the chip global network; if the
CLKBIF is placed in one of the GA pin locations, it will use quadrant global network. This is shown in
Figure 3-12 on page 65 and Figure 3-13 on page 65.

Figure 3-11 • CLKBUF Macro
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Macro Signal Descriptions
The PLL macro supports two inputs and up to six outputs. Table 4-3 gives a description of each signal.  

Input Clock
The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O 
pins, or internally from the core. For Fusion families, the input reference clock can also be from the 
embedded RC oscillator or crystal oscillator.

Global Output Clocks
GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1, 
Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the 
high-speed global and quadrant networks of the low power flash devices.
A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and 
the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks
YB and YC are known as Core Outputs and can be used to drive internal logic without using global 
network resources. This is especially helpful when global network resources must be conserved and 
utilized for other timing-critical paths.

Table 4-3 • Input and Output Signals of the PLL Block
Signal Name I/O Description
CLKA Reference Clock Input Reference clock input for PLL core; input clock for primary output 

clock, GLA
OADIVRST Reset Signal for the 

Output Divider A 
Input For Fusion only. OADIVRST can be used when you bypass the PLL 

core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is 
to reset the output of the final clock divider to synchronize it with the 
input to that divider when the PLL is bypassed. The signal is active 
on a low to high transition. The signal must be low for at least one 
divider input. If PLL core is used, this signal is "don't care" and the 
internal circuitry will generate the reset signal for the 
synchronization purpose.

OADIVHALF Output A Division by 
Half

Input For Fusion only. Active high. Division by half feature. This feature 
can only be used when users bypass the PLL core (i.e., OAMUX = 
001) and the RC Oscillator (RCOSC) drives the CLKA input. This 
can be used to divide the 100 MHz RC oscillator by a factor of 1.5, 
2.5, 3.5, 4.5 ... 14.5). Refer to Table 4-18 on page 111 for more 
information.

EXTFB External Feedback Input Allows an external signal to be compared to a reference clock in the 
PLL core's phase detector.

POWERDOWN Power Down Input Active low input that selects power-down mode and disables the 
PLL. With the POWERDOWN signal asserted, the PLL core sends 
0 V signals on all of the outputs.

GLA Primary Output Output Primary output clock to respective global/quadrant clock networks
GLB Secondary 1 Output Output Secondary 1 output clock to respective global/quadrant clock 

networks
YB Core 1 Output Output Core 1 output clock to local routing network
GLC Secondary 2 Output Output Secondary 2 output clock to respective global/quadrant clock 

networks
YC Core 2 Output Output Core 2 output clock to local routing network
LOCK PLL Lock Indicator Output Active high signal indicating that steady-state lock has been 

achieved between CLKA and the PLL feedback signal
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core 
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself, 
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see 
Figure 4-12 for an example illustration of the connections, shown in red). 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-12 • Illustration of Core Logic Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
IGLOOe and ProASIC3E CCC Locations
IGLOOe and ProASIC3E devices have six CCCs—one in each of the four corners and one each in the 
middle of the east and west sides of the device (Figure 4-15).
All six CCCs are integrated with PLLs, except in PQFP-208 package devices. PQFP-208 package 
devices also have six CCCs, of which two include PLLs and four are simplified CCCs. The CCCs with 
PLLs are implemented in the middle of the east and west sides of the device (middle right and middle 
left). The simplified CCCs without PLLs are located in the four corners of the device (Figure 4-16).   

Figure 4-15 • CCC Locations in IGLOOe and ProASIC3E Family Devices (except PQFP-208 
package)

Figure 4-16 • CCC Locations in ProASIC3E Family Devices (PQFP-208 package)
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ProASIC3L FPGA Fabric User’s Guide
256×18 FIFO is full, even though a 128×18 FIFO was requested. For this example, the Almost-Full flag
can be used instead of the Full flag to signal when the 128th data word is reached.
To accommodate different aspect ratios, the almost-full and almost-empty values are expressed in terms
of data bits instead of data words. SmartGen translates the user’s input, expressed in data words, into
data bits internally. SmartGen allows the user to select the thresholds for the Almost-Empty and Almost-
Full flags in terms of either the read data words or the write data words, and makes the appropriate
conversions for each flag.
After the empty or full states are reached, the FIFO can be configured so the FIFO counters either stop or
continue counting. For timing numbers, refer to the appropriate family datasheet.

Signal Descriptions for FIFO4K18
The following signals are used to configure the FIFO4K18 memory element:

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 6-6).

WBLK and RBLK
These signals are active-low and will enable the respective ports when LOW. When the RBLK signal is
HIGH, that port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active-low and REN is active-high by default. These signals can be
configured as active-high or -low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver. 
Note: For the Automotive ProASIC3 FIFO4K18, for the same clock, 180° out of phase (inverted)

between clock pins should be used.
RPIPE
This signal is used to specify pipelined read on the output. A LOW on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active-low signal resets the control logic and forces the output hold state registers to zero when
asserted. It does not reset the contents of the memory array (Table 6-7 on page 160).
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
RESET signal, care must be taken not to assert it too close to the edges of active read and write clocks. 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 6-7 on page 160). 

Table 6-6 • Aspect Ratio Settings for WW[2:0]

WW[2:0] RW[2:0] D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved
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ProASIC3L FPGA Fabric User’s Guide
The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 147 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

150

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 

162

Date Changes Page
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I/O Structures in IGLOO and ProASIC3 Devices
Solution 3
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the bus switch, as shown in Figure 7-11. Relying on the
diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 7-11 • Solution 3
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ProASIC3L FPGA Fabric User’s Guide
Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.

Figure 7-12 • Solution 4
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ProASIC3L FPGA Fabric User’s Guide
Power-Up Behavior 
Low power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for 
power-up and power-down. This eliminates extra board components for power-up sequencing, such as a 
power-up sequencer.
During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O 
buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the 
user-selected I/O macros. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section 
on page 373 for details. 

Drive Strength
Low power flash devices have up to seven programmable output drive strengths. The user can select the 
drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro, 
such as OUTBUF_S_12 (slew = low, out_drive = 12 mA).
The maximum available drive strength is 24 mA per I/O. Though no I/O should be forced to source or 
sink more than 24 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS 
model for maximum source/sink current) during signal transition (AC current). Every device package has 
its own power dissipation limit; hence, power calculation must be performed accurately to determine how 
much current can be tolerated per I/O within that limit.

I/O Interfacing 
Low power flash devices are 5 V–input– and 5 V–output–tolerant if certain I/O standards are selected 
(refer to the "5 V Input and Output Tolerance" section on page 232). Along with other low-voltage I/O 
macros, this 5 V tolerance makes these devices suitable for many types of board component interfacing.
Table 8-19 shows some high-level interfacing examples using low power flash devices. 

Table 8-19 • High-Level Interface Examples

Interface

Clock I/O

Type Frequency Type Signals In Signals Out Data I/O

GM Src Sync 125 MHz LVTTL 8 8 125 Mbps

TBI Src Sync 125 MHz LVTTL 10 10 125 Mbps

XSBI Src Sync 644 MHz LVDS 16 16 644 Mbps

XGMI Src Sync DDR 156 MHz HSTL1 32 32 312 Mbps

FlexBus 3 Sys Sync 104 MHz LVTTL ≤ 32 ≤ 32 ≤ 104

Pos-PHY3/SPI-3 Sys Sync 104 LVTTL 8,16,32 8,16,32 ≤ 104 Mbps

FlexBus 4/SPI-4.1 Src Sync 200 MHz HSTL1 16,64 16,64 200 Mbps

Pos-PHY4/SPI-4.2 Src Sync DDR ≥ 311 MHz LVDS 16 16 ≥ 622 Mbps

SFI-4.1 Src Sync 622 MHz LVDS 16 16 622 Mbps

CSIX L1 Sys Sync ≤ 250 MHz HSTL1 32,64,96,128 32,64,96,128 ≤ 250 Mbps

Hyper Transport Sys Sync DDR ≤ 800 MHz LVDS 2,4,8,16 2,4,8,16 ≤ 1.6 Gbps

Rapid I/O Parallel Sys Sync DDR 250 MHz – 1 GHz LVDS 8,16 8,16 ≤ 2 Gbps

Star Fabric CDR LVDS 4 4 622 Mbps

Note: Sys Sync = System Synchronous Clocking, Src Sync = Source Synchronous Clocking, and CDR = Clock and 
Data Recovery.
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General Flash Programming Information

Programming Basics
When choosing a programming solution, there are a number of options available. This section provides a 
brief overview of those options. The next sections provide more detail on those options as they apply to 
Microsemi FPGAs. 

Reprogrammable or One-Time-Programmable (OTP)
Depending on the technology chosen, devices may be reprogrammable or one-time-programmable. As 
the name implies, a reprogrammable device can be programmed many times. Generally, the contents of 
such a device will be completely overwritten when it is reprogrammed. All Microsemi flash devices are 
reprogrammable.
An OTP device is programmable one time only. Once programmed, no more changes can be made to 
the contents. Microsemi flash devices provide the option of disabling the reprogrammability for security 
purposes. This combines the convenience of reprogrammability during design verification with the 
security of an OTP technology for highly sensitive designs.

Device Programmer or In-System Programming
There are two fundamental ways to program an FPGA: using a device programmer or, if the technology 
permits, using in-system programming. A device programmer is a piece of equipment in a lab or on the 
production floor that is used for programming FPGA devices. The devices are placed into a socket 
mounted in a programming adapter module, and the appropriate electrical interface is applied. The 
programmed device can then be placed on the board. A typical programmer, used during development, 
programs a single device at a time and is referred to as a single-site engineering programmer. 
With ISP, the device is already mounted onto the system printed circuit board when programming occurs. 
Typically, ISD programming is performed via a JTAG interface on the FPGA. The JTAG pins can be 
controlled either by an on-board resource, such as a microprocessor, or by an off-board programmer 
through a header connection. Once mounted, it can be programmed repeatedly and erased. If the 
application requires it, the system can be designed to reprogram itself using a microprocessor, without 
the use of any external programmer.
If multiple devices need to be programmed with the same program, various multi-site programming 
hardware is available in order to program many devices in parallel. Microsemi In House Programming is 
also available for this purpose.

Programming Features for Microsemi Devices 
Flash Devices
The flash devices supplied by Microsemi are reprogrammable by either a generic device programmer or 
ISP. Microsemi supports ISP using JTAG, which is supported by the FlashPro4 and FlashPro3, FlashPro 
Lite, Silicon Sculptor 3, and Silicon Sculptor II programmers.
Levels of ISP support vary depending on the device chosen:

• All SmartFusion, Fusion, IGLOO, and ProASIC3 devices support ISP.
• IGLOO, IGLOOe, IGLOO nano V5, and IGLOO PLUS devices can be programmed in-system 

when the device is using a 1.5 V supply voltage to the FPGA core.
• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only) 

or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V.
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Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the 
Microsemi SoC Products Group website. These guidelines are discussed in the datasheets and 
application notes (refer to the “Related Documents” section of the datasheet for application note links). 
Customers are also expected to troubleshoot board-level signal integrity issues by measuring voltages 
and taking oscilloscope plots.

Programming Failure Allowances
Microsemi has strict policies regarding programming failure allowances. Please refer to Programming 
and Functional Failure Guidelines on the Microsemi SoC Products Group website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time, 
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail 
You can communicate your technical questions to our email address and receive answers back by email, 
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. 
Microsemi monitors the email account throughout the day. When sending your request to us, please be 
sure to include your full name, company name, and contact information for efficient processing of your 
request. The technical support email address is soc_tech@microsemi.com.

Telephone 
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name, 
company name, telephone number, and question. Once this is done, a case number is assigned. Then 
the center forwards the information to a queue where the first available applications engineer receives 
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday 
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
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Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Microsemi Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 12-3 on page 304 and Figure 12-4 on
page 306 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication 
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming. 
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted. 
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 12-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices 

Designer
Software

Programming
File Generation

with AES
Encryption

IGLOO and ProASIC3

Decrypted
 Bitstream

MAC
Validation

AES
Decryption Core

Transmit Medium / 
Public Network

Encrypted Bitstream

FlashROMAES
Key

FPGA
Core
306 Revision 4

http://csrc.nist.gov/archive/aes/index1.html


ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.1
(October 2008)

The "Introduction" was revised to include information about the core supply voltage
range of operation in V2 devices.

341

IGLOO nano device support was added to Table 14-1 • Flash-Based FPGAs
Supporting Voltage Switching Circuit.

342

The "Circuit Description" section was updated to include IGLOO PLUS core
operation from 1.2 V to 1.5 V in 50 mV increments.

343

v1.0
(August 2008)

The "Microsemi’s Flash Families Support Voltage Switching Circuit" section was
revised to include new families and make the information more concise.

342
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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ProASIC3L FPGA Fabric User’s Guide
Brownout Voltage
Brownout is a condition in which the voltage supplies are lower than normal, causing the device to 
malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of 
the design inside the flash FPGA if voltage supplies are below their minimum recommended operating 
condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power 
supplies. Refer to Table 18-3 for device-specific brownout deactivation levels. For the purpose of 
characterization, a direct path from the device input to output is monitored while voltage supplies are 
lowered gradually. The brownout point is defined as the voltage level at which the output stops following 
the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in 
typical operating conditions showed the brownout voltage levels to be within the specification. 
During device power-down, the device I/Os become tristated once the first supply in the power-down 
sequence drops below its brownout deactivation voltage. 

PLL Behavior at Brownout Condition
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels mentioned 
above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. 
The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together 
In this condition, both VCC and VCCPLL drop below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level. 
During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 ± 0.25 V or 
± 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. 
If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout 
In this case, only VCCPLL drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the VCC 
supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V 
± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial 
power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the 
activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout
In this condition, VCC drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and VCCPLL remains 
at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 
1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 ± 
0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal 
toggling. If this condition occurs, there are two ways to recover the PLL output lock signal: 

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator 
to ensure proper power-up behavior. 

Table 18-3 • Brownout Deactivation Levels for VCC and VCCI

Devices
VCC Brownout 

Deactivation Level (V)
VCCI Brownout 

Deactivation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS and ProASIC3L devices running at 
VCC = 1.5 V

0.75 V ± 0.25 V 0.8 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V

0.75 V ± 0.2 V 0.8 V ± 0.15 V
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Revision 0
(continued)

"DDR for Microsemi’s Low Power Flash Devices" was revised. 285

"Programming Flash Devices" was revised. 298

"In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

339

"Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System
Programming" was revised.

347

"Boundary Scan in Low Power Flash Devices" was revised. 362
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