

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2317vtebl25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2.2	Interrupt Priority Registers A to K (IPRA to IPRK)
-------	--

Bit	:	7	6	5	4	3	2	1	0
			IPR6	IPR5	IPR4	—	IPR2	IPR1	IPR0
Initial va	lue :	0	1	1	1	0	1	1	1
R/W	:	—	R/W	R/W	R/W	—	R/W	R/W	R/W

The IPR registers are eleven 8-bit readable/writable registers that set priorities (levels 7 to 0) for interrupts other than NMI.

The correspondence between IPR settings and interrupt sources is shown in table 5.3.

The IPR registers set a priority (levels 7 to 0) for each interrupt source other than NMI.

The IPR registers are initialized to H'77 by a reset and in hardware standby mode.

Bits 7 and 3—Reserved: Read-only bits, always read as 0.

	Bits					
Register	6 to 4	2 to 0				
IPRA	IRQ0	IRQ1				
IPRB	IRQ2 IRQ3	IRQ4 IRQ5				
IPRC	IRQ6 IRQ7	DTC				
IPRD	Watchdog timer	*				
IPRE	*	A/D converter				
IPRF	TPU channel 0	TPU channel 1				
IPRG	TPU channel 2	TPU channel 3				
IPRH	TPU channel 4	TPU channel 5				
IPRI	8-bit timer channel 0	8-bit timer channel 1				
IPRJ	*	SCI channel 0				
IPRK	SCI channel 1	*				

Note: * Reserved bits.

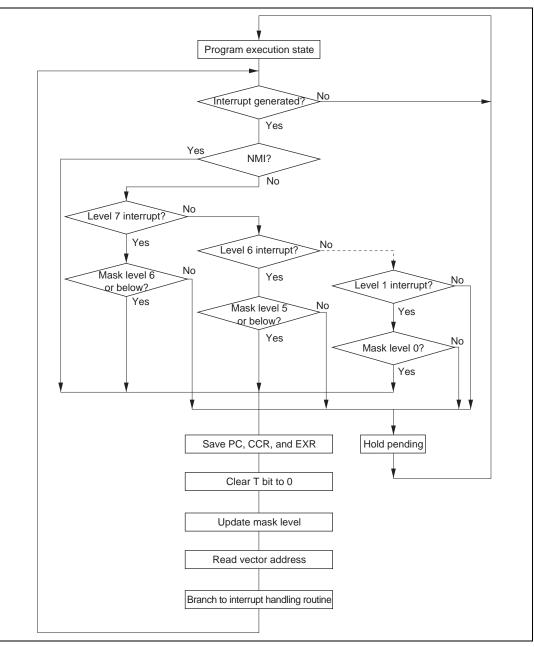
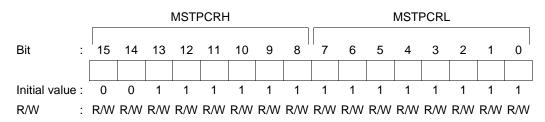


Figure 5.6 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 2


Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.

Bit 7 SWDTE	Description					
0	DTC software activation is disabled	(Initial value)				
	[Clearing conditions]					
	When the DISEL bit is 0 and the specified number of transfers have not ended					
	When 0 is written after a software activation data-transfer-complete interrupt is					
	issued to the CPU					
1	DTC software activation is enabled					
	[Holding conditions]					
	When the DISEL bit is 1 and data transfer has ended					
	When the specified number of transfers have ended					
	 During data transfer due to software activation 					

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as H'0400 + ((vector number) << 1). <<1 indicates a one-bit left-shift. For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420.

7.2.9 Module Stop Control Register (MSTPCR)

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP14 bit in MSTPCR is set to 1, DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTP14 bit while the DTC is operating. For details, see section 19.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

7.4 Interrupts

An interrupt request is issued to the CPU when the DTC finishes the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTEND) is generated.

When the DISEL bit is 1 and one data transfer has ended, or the specified number of transfers have ended, after data transfer ends, the SWDTE bit is held at 1 and an SWDTEND interrupt is generated. The interrupt handling routine should clear the SWDTE bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1.

7.5 Usage Notes

Module Stop: When the MSTP14 bit in MSTPCR is set to 1, the DTC clock stops, and the DTC enters the module stop state. However, 1 cannot be written to the MSTP14 bit while the DTC is operating.

On-Chip RAM: The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0.

DTCE Bit Setting: For DTCE bit setting, read/write operations must be performed using bitmanipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.

Chain Transfer: When chain transfer is used, clearing of the activation source or DTCER is performed when the last of the chain of data transfers is executed. SCI and A/D converter interrupt/activation sources, on the other hand, are cleared when the DTC reads or writes to the prescribed register.

Therefore, when the DTC is activated by an interrupt or activation source, if a read/write of the relevant register is not included in the last chained data transfer, the interrupt or activation source will be retained.

8.8.2 Register Configuration

Table 8.13 shows the port C register configuration.

Table 8.13 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FEBB
Port C data register	PCDR	R/W	H'00	H'FF6B
Port C register	PORTC	R	Undefined	H'FF5B
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72

Note: * Lower 16 bits of the address.

Port C Data Direction Register (PCDDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

PCDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

• Modes 4 and 5

The corresponding port C pins are address outputs irrespective of the value of the PCDDR bits.

• Mode 6*

Setting PCDDR bits to 1 makes the corresponding port C pin address outputs, while clearing the bits to 0 makes the pins input ports.

• Mode 7*

Setting PCDDR bits to 1 makes the corresponding port C pins an output ports, while clearing the bits to 0 makes the pins input ports.

Note: * Modes 6 and 7 are not available in the ROMless versions.

Channel 0: TIER0

9.2.4 Timer Interrupt Enable Registers (TIER)

Channel 3: TIER3								
Bit :	7	6	5	4	3	2	1	0
	TTGE	—		TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value :	0	1	0	0	0	0	0	0
R/W :	R/W	—	—	R/W	R/W	R/W	R/W	R/W
Channel 1: TIER1 Channel 2: TIER2 Channel 4: TIER4 Channel 5: TIER5								
Bit :	7	6	5	4	3	2	1	0
	TTGE	—	TCIEU	TCIEV	—		TGIEB	TGIEA
Initial value :	0	1	0	0	0	0	0	0
R/W :	R/W	_	R/W	R/W	_	_	R/W	R/W

The TIER registers are 8-bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7 TTGE	Description	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Contention between TGR Write and Compare Match: If a compare match occurs in the T_2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the same value as before is written.

Figure 9.51 shows the timing in this case.

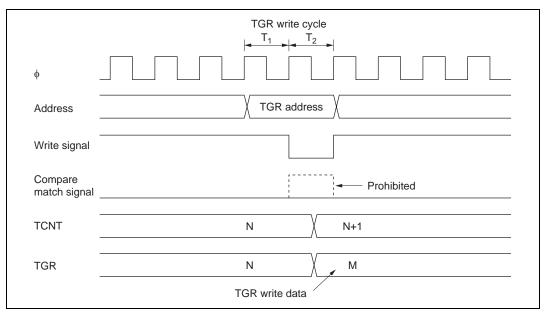


Figure 9.51 Contention between TGR Write and Compare Match

Bit 6—Receive Interrupt Enable (RIE): Enables or disables receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request generation when serial receive data is transferred from RSR to RDR and the RDRF flag in SSR is set to 1.

Bit 6 RIE	Description
0	Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request disabled* (Initial value)
1	Receive-data-full interrupt (RXI) request and receive-error interrupt (ERI) request enabled
Note:*	* RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.
D !/ F	

Bit 5—Transmit Enable (TE): Enables or disables the start of serial transmission by the SCI.

Bit 5 TE		Description
0		Transmission disabled ^{*1} (Initial value)
1		Transmission enabled ^{*2}
Notes:	1.	The TDRE flag in SSR is fixed at 1.
	2.	In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.
		SMR setting must be performed to decide the transfer format before setting the TE bit to 1.

Bit 4—Receive Enable (RE): Enables or disables the start of serial reception by the SCI.

Bit 4 RE		Description	
0		Reception disabled ^{*1} (Initial value	ıe)
1		Reception enabled ^{*2}	
Notes:	1.	Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.	<u>ו</u>
	2.	Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in synchronous mode.	
		SMR setting must be performed to decide the transfer format before setting the RE bit	:

to 1.

	SN	/IR Sett	ings			SCI Transfer Format					
Bit 7	Bit 6	Bit 2	Bit 5	Bit 3	-	Data	Multi- processor	Parity	Stop Bit		
C/Ā	CHR	MP	PE	STOP	Mode	Length	Bit	Bit	Length		
0	0	0	0	0	Asynchronous	8-bit data	No	No	1 bit		
				1	mode				2 bits		
			1	0	-			Yes	1 bit		
				1					2 bits		
	1	-	0	0	-	7-bit data	_	No	1 bit		
				1	-				2 bits		
			1	0	-			Yes	1 bit		
				1	-				2 bits		
	0	1	_	0	Asynchronous	8-bit data	Yes	No	1 bit		
			_	1	- mode (multi- processor				2 bits		
	1	_	_	0	format)	7-bit data	_		1 bit		
			_	1	-				2 bits		
1	—	—	—	—	Synchronous mode	8-bit data	No	-	None		

Table 12.8	SMR Settings and Serial Transfer Format Selection
-------------------	---

Table 12.9 SMR and SCR Settings and SCI Clock Source Selection

SMR	SCR	Settings			SCI Transmit/Receive Clock
Bit 7	Bit 1	Bit 0	-	Clock	
C/Ā	CKE1	CKE0	Mode	Source	SCK Pin Function
0	0	0	Asynchronous	Internal	SCI does not use SCK pin
		1	[–] mode		Outputs clock with same frequency as bit rate
	1	0	_	External	Inputs clock with frequency of 16 times
		1	_		the bit rate
1	0	0	Synchronous	Internal	Outputs serial clock
		1	mode		
	1	0	-	External	Inputs serial clock
		1			

The operation sequence is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pullup resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the smart card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] The receiving station carries out a parity check.

If there is no parity error and the data is received normally, the receiving station waits for reception of the next data.

If a parity error occurs, however, the receiving station outputs an error signal (DE, low-level) to request retransmission of the data. After outputting the error signal for the prescribed length of time, the receiving station places the signal line in the high-impedance state again. The signal line is pulled high again by a pull-up resistor.

[5] If the transmitting station does not receive an error signal, it proceeds to transmit the next data frame.

If it does receive an error signal, however, it returns to step [2] and retransmits the data in which the error occurred.

Block Transfer Mode: The operation sequence in block transfer mode is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pullup resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the smart card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] The receiving station carries out a parity check, but does not output an error signal even if an error has occurred. Since subsequent receive operations cannot be carried out if an error occurs, the error flag must be cleared to 0 before the parity bit for the next frame is received.
- [5] The transmitting station proceeds to transmit the next data frame.

17.7 Programming/Erasing Flash Memory

In the on-board programming modes, flash memory programming and erasing is performed by software, using the CPU. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transition to these modes can be made for the on-chip ROM area by setting the PSU, ESU, P, E, PV, and EV bits in FLMCR1.

The flash memory cannot be read while being programmed or erased. Therefore, the program that controls flash memory programming/erasing (the programming control program) should be located and executed in on-chip RAM or external memory. When the program is located in external memory, an instruction for programming the flash memory and the following instruction should be located in on-chip RAM. The DTC should not be activated before or after the instruction for programming the flash memory is executed.

- Notes: 1. Operation is not guaranteed if setting/resetting of the SWE, ESU, PSU, EV, PV, E, and P bits in FLMCR1 is executed by a program in flash memory.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Perform programming in the erased state. Do not perform additional programming on previously programmed addresses.

17.7.1 Program Mode

Follow the procedure shown in the program/program-verify flowchart in figure 17.15 to write data or programs to flash memory. Performing program operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

For the wait times (x, y, z1, z2, z3, α , β , γ , ε , η , θ) after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 20.3.6, Flash Memory Characteristics.

Following the elapse of (x) μ s or more after the SWE bit is set to 1 in flash memory control register 1 (FLMCR1), 128-byte program data is stored in the program data area and reprogram data area, and the 128-byte data in the reprogram data area is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 or H'80. 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Response H'06

• Response, H'06, (1 byte): Response to selection of a new bit rate When it is possible to set the bit rate, the response will be ACK.

Error	H'BF	ERROR
Response		

- Error response, H'BF, (1 byte): Error response to selection of new bit rate
- ERROR: (1 byte): Error code
 - H'11: Sum checking error
 - H'24: Bit-rate selection error
 - The rate is not available.
 - H'25: Error in input frequency This input frequency is not within the specified range.
 - H'26: Multiplication-ratio error^{*} The ratio does not match an available ratio.
 - H'27: Operating frequency error*

The frequency is not within the specified range.

Note: * This error does not occur with this LSI.

Received Data Check

The methods for checking of received data are listed below.

(1) Input frequency

The received value of the input frequency is checked to ensure that it is within the range of minimum to maximum frequencies which matches the clock modes of the specified device. When the value is out of this range, an input-frequency error is generated.

(2) Multiplication ratio

The received value of the multiplication ratio or division ratio is checked to ensure that it matches the clock modes of the specified device. When the value is out of this range, an input-frequency error is generated.

Transitions to the reset state, and hardware standby mode are inhibited during programming/erasing. When the reset signal is accidentally input to the chip, a longer period in the reset state than usual ($100 \ \mu$ s) is needed before the reset signal is released.

- (7) Switching of the MATs by FMATS should be needed when programming/erasing of the user boot MAT is operated in user-boot mode. The program which switches the MATs should be executed from the on-chip RAM. See section 17.27, Switching between User MAT and User Boot MAT. Please make sure you know which MAT is selected when switching between them.
- (8) When the data storable area indicated by programming parameter FMPDR is within the flash memory area, an error will occur even when the data stored is normal. Therefore, the data should be transferred to the on-chip RAM to place the address that FMPDR indicates in an area other than the flash memory.

In consideration of these conditions, there are three factors; operating mode, the bank structure of the user MAT, and operations.

The areas in which the programming data can be stored for execution are shown in table 17.26.

Ini	tiated Modes
User Program Mode	User Boot Mode [*]
Table 17.73 (1)	Table 17.73 (3)
Table 17.73 (2)	Table 17.73 (4)
	User Program Mode Table 17.73 (1)

Note: * Programming/Erasing is possible to user MATs.

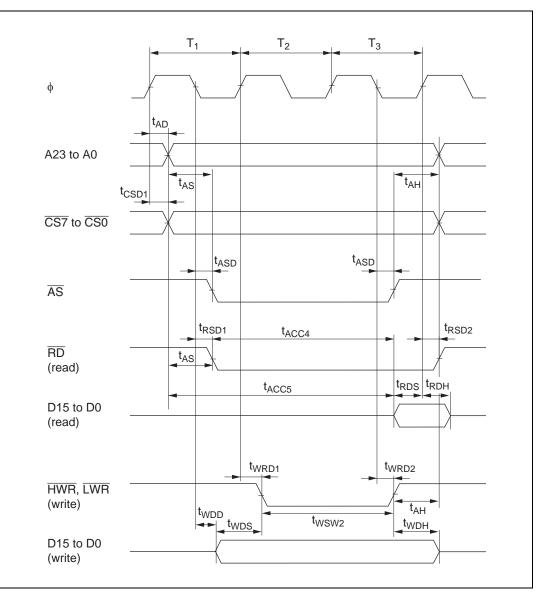


Figure 20.7 Basic Bus Timing (3-State Access)

				Con	dition A	Con	dition B		Test
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI	Input clock	Asynchronous	t _{Scyc}	4	—	4		t _{cyc}	Figure 20.20
	cycle	Synchronous	_	6	_	6	_		-
	Input clock pu	t _{scкw}	0.4	0.6	0.4	0.6	t _{Scyc}	_	
	Input clock ris	t _{SCKr}	—	1.5	—	1.5	t _{cyc}	_	
	Input clock fa	t _{SCKf}	_	1.5	—	1.5	t _{cyc}	-	
	Transmit data	\mathbf{t}_{TXD}	_	50	_	40	ns	Figure 20.21	
	Receive data (synchronous	t _{RXS}	50	_	40	_	ns	_	
	Receive data hold time (synchronous)		t _{RXH}	50	_	40	_	ns	_
A/D converter	Trigger input	setup time	t _{TRGS}	30	_	30	_	ns	Figure 20.22

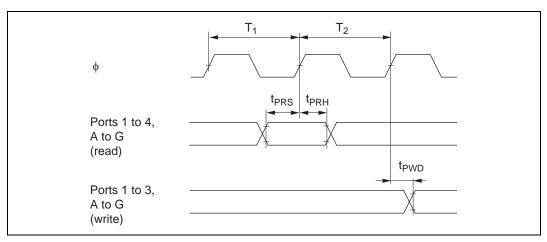


Figure 20.13 I/O Port Input/Output Timing

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Input pull-up MOS current	Ports A to E	-I _p	10	_	300	μA	$V_{CC} = 3.0 V$ to 3.6 V, $V_{in} = 0 V$
Input capacitance	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
	NMI		_	_	30	pF	f = 1 MHz
	All input pins except RES and NMI	_	_	_	15	pF	T _a = 25°C
Current	Normal operation	I _{CC} ^{*4}	_	25 (3.3 V)	50	mA	f = 25 MHz
dissipation*2	Sleep mode			17 (3.3 V)	40	mA	_
	Standby mode ^{*3}		_	20	90	μΑ	$T_a \leq 50^\circ C$
			_	_	120	μΑ	50°C < T _a
Analog power	During A/D and D/A conversion	Al _{CC}	_	1.0 (3.0 V)	2.0	mA	
supply voltage	Idle	_	_	1.0	5.0	μΑ	_
Reference power	During A/D and D/A conversion	Alcc	—	1.4 (3.0 V)	3.0	mA	
supply voltage	Idle	-	_	0.2	5.0	μΑ	_
RAM standby	voltage	V _{RAM}	2.5	_		V	_
VCC start vol	tage ^{*5}	VCC _{START}	_	_	0.4	V	_
VCC rising ed	lge ^{*5}	SVCC	_		10	ms/V	_

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref}, and AV_{SS} pins open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

2. Current dissipation values are for $V_{IH min} = V_{CC} - 0.2 \text{ V}$ and $V_{IL max} = 0.2 \text{ V}$ with all output pins unloaded and all MOS input pull-ups in the off state.

3. The values are for $V_{\text{RAM}} \leq V_{\text{CC}} <$ 3.0 V, V_{IH} min = $V_{\text{CC}} \times$ 0.9, and V_{IL} max = 0.3 V.

- 4. I_{CC} depends on V_{CC} and f as follows: I_{CC} max = 0.5 (mA) + 0.55 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC} max = 0.4 (mA) + 0.44 (mA/(MHz × V)) × V_{CC} × f (sleep mode)
- 5. Applies on condition that the $\overline{\text{RES}}$ pin is low level at power on.

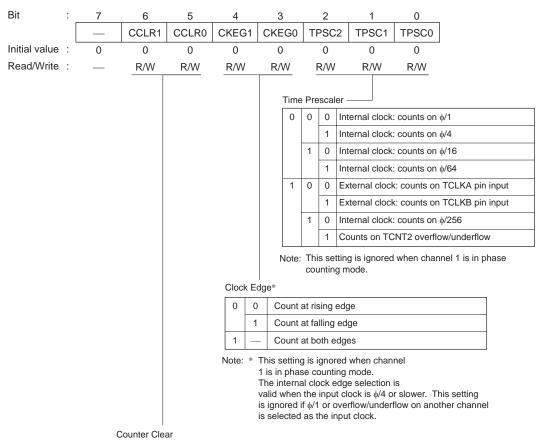
Appendix B Internal I/O Registers

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Bus	Bus width control register	ABWCR	R/W	H'FF/H'00 ^{*5}	H'FED0
controller	Access state control register	ASTCR	R/W	H'FF	H'FED1
	Wait control register H	registerABWCRR/WH'FF/H'00'trol registerASTCRR/WH'FFster HWCRHR/WH'FFter LWCRLR/WH'FFter HBCRHR/WH'D0ter LBCRLR/WH'00ter IBCRLR/WH'00ter IBCRIR/WH'00ter IBCRLR/WH'00ter ITCN0R/WH'FFister 0TCORA0R/WH'FFagister A0TCORB0R/WH'FFagister ITCR1R/WH'00tus register 1TCSR1R/WH'00tus register 1TCORA1R/WH'FFagister A1TCORB1R/WH'FFagister B1TCORB1R/WH'FFtus registerMSTPCRR/WH'3FFFtus registerTCSRR/(W) *9H'18	H'FF	H'FED2	
	Wait control register L	WCRL	R/W	H'FF	H'FED3
	Bus control register H	BCRH	R/W	H'D0	H'FED4
	Bus control register L	BCRL	R/W	H'3C	H'FED5
8-bit	Timer control register 0	TCR0	R/W	H'00	H'FFB0
timer 0	Timer control/status register 0	TCSR0	R/(W)*7	H'00	H'FFB2
	Timer constant register A0	TCORA0	R/W	H'FF	H'FFB4
	Timer constant register B0	TCORB0	R/W	H'FF	H'FFB6
	Timer counter 0	TCNT0	R/W	H'00	H'FFB8
8-bit timer 1	Timer control register 1	TCR1	R/W	H'00	H'FFB1
	Timer control/status register 1	TCSR1	R/(W) *7	H'10	H'FFB3
	Timer constant register A1	TCORA1	R/W	H'FF	H'FFB5
	Timer constant register B1	TCORB1	R/W	H'FF	H'FFB7
	Timer counter 1	TCNT1	R/W	H'00	H'FFB9
All 8-bit timer channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
WDT	Timer control/status register	TCSR	R/(W) *9	H'18	H'FFBC: Write ^{*8}
					H'FFBC: Read
	Timer counter	TCNT	R/W	H'00	H'FFBC: Write ^{*6}
					H'FFBD: Read
	Reset control/status register	RSTCSR	R/(W) *9	H'1F	H'FFBE: Write ^{*8}
					H'FFBF: Read

ontroller ontroller
onuroner
ontroller

Bit :	7	6	5	4	3	2	1	0
	_	IPR6	IPR5	IPR4		IPR2	IPR1	IPR0
Initial value :	0	1	1	1	0	1	1	1
Read/Write :		R/W	R/W	R/W	_	R/W	R/W	R/W

Set priority (levels 7 to 0) for interrupt sources


Pogistor	Bits	
Register	6 to 4	2 to 0
IPRA	IRQ0	IRQ1
IPRB	IRQ2	IRQ4
	IRQ3	IRQ5
IPRC	IRQ6	DTC
	IRQ7	
IPRD	WDT	*
IPRE	*	A/D converter
IPRF	TPU channel 0	TPU channel 1
IPRG	TPU channel 2	TPU channel 3
IPRH	TPU channel 4	TPU channel 5
IPRI	8-bit timer channel 0	8-bit timer channel 1
IPRJ	*	SCI channel 0
IPRK	SCI channel 1	*

Correspondence between Interrupt Sources and IPR Settings

Note: * Reserved bits.

TCR1—Timer Control Register 1

H'FFE0

0	0	TCNT clearing disabled	
	1	TCNT cleared by TGRA compare match/input capture	
1	0	TCNT cleared by TGRB compare match/input capture	
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*	

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

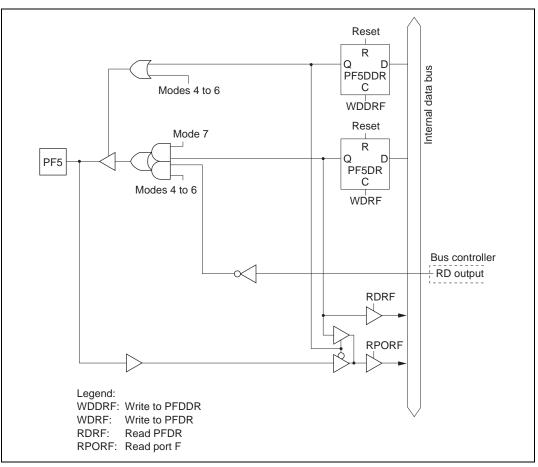


Figure C.10(f) Port F Block Diagram (Pin PF5)