

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	70
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2319cvte25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 Pin Functions

Table 1.3Pin Functions

			Pin No.				
Туре	Symbol	TFP-100B, TFP-100G	FP-100A	TLP-113V	I/O	Name and Function	
Power supply	V _{cc}	40, 65, 98	42, 67, 100	B3, E11, L7	Input	Power supply: For connection to the power supply. All V_{CC} pins should be connected to the system power supply.	
	V _{SS}	7, 18, 31, 49, 68, 88	9, 20, 33, 51, 70, 90	A6, D2, E9, G3, J4, K3, K10	Input	Ground: For connection to ground (0 V). All V_{SS} pins should be connected to the system power supply (0 V).	
Internal voltage step-down pin	V _{CL} *1	60	62	G8	Output	An external capacitor should be connected between this pin and GND (0 V). Do not connect it to V_{CC} .	
Clock	XTAL	66	68	F10	Input	Connects to a crystal oscillator. See section 18, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.	
	EXTAL	67	69	F9	Input	Connects to a crystal oscillator. The EXTAL pin can also input an external clock. See section 18, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.	
	φ	69	71	D11	Output	System clock: Supplies the system clock to an external device.	

			Pin No.			
Туре	Symbol	TFP-100B, TFP-100G	FP-100A	TLP-113V	I/O	Name and Function
Watchdog timer (WDT)	WDTOVF ^{*6}	60	62	G9	Output	Watchdog timer overflows: The counter overflows signal output pin in watchdog timer mode.
Serial com- munication	TxD1, TxD0	9, 8	11, 10	E4, E1	Output	Transmit data (channel 0, 1): Data output pins.
interface (SCI) Smart Card	RxD1, RxD0	11, 10	13, 12	E2, E3	Input	Receive data (channel 0, 1): Data input pins.
interface	SCK1 SCK0	13, 12	15, 14	F1, F4	I/O	Serial clock (channel 0, 1): Clock I/O pins.
A/D converter	AN7 to AN0	86 to 79	88 to 81	D7, C7, A7, B8, C8, B9, A8, D9	Input	Analog 7 to 0: Analog input pins.
	ADTRG	93	95	C6	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.
D/A converter	DA1, DA0	86, 85	88, 87	D7, C7	Output	Analog output: D/A converter analog output pins.
A/D converter and D/A converter	AV _{CC}	77	79	A11	Input	This is the power supply pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (V_{CC}).
	AV _{SS}	87	89	B7	Input	This is the ground pin for the A/D converter and D/A converter. This pin should be connected to the system power supply (0 V).
	V _{ref}	78	80	A9	Input	This is the reference voltage input pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (V_{CC}).

Bit n DTCEn	Description						
0	DTC activation by this interrupt is disabled (Initial value)						
	[Clearing conditions]						
	When the DISEL bit is 1 and the data transfer has ended						
	 When the specified number of transfers have ended 						
1	DTC activation by this interrupt is enabled						
	[Holding condition]						
	When the DISEL bit is 0 and the specified number of transfers have not ended						
	(n = 7 to 0)						

Bit n—DTC Activation Enable (DTCEn)

A DTCE bit can be set for each interrupt source that can activate the DTC. The correspondence between interrupt sources and DTCE bits is shown in table 7.5, together with the vector numbers generated by the interrupt controller.

For DTCE bit setting, read/write operations must be performed using bit-manipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.

7.2.8 DTC Vector Register (DTVECR)

Bit	:	7	6	5	4	3	2	1	0
		SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	R/(W)	R/(W)*						

Note: * Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt.

DTVECR is initialized to H'00 by a reset and in hardware standby mode.

Port	Description	Pins	Mode 4	Mode 5	Mode 6 ^{*1}	Mode 7 ^{*1}	
Port G	 5-bit I/O port 	PG4/CS0	When DDR =	0*2: input port		I/O port also	
	 Schmitt- 		When DDR =	1*3: CSO outp	ut	functions as interrupt	
	triggered input (IRQ7, IRQ6)	PG3/CS1/CS7	I/O port			input pins	
	(IRQ7, IRQ6)			1, CS167E = $\frac{1}{1000}$ tions as CS1 c		(IRQ7, IRQ6) and A/D converter	
			When DDR = 1, CS167E = 1, and CSS17 = 1: Also functions as $\overline{CS7}$ output				
		PG2/CS2	I/O port	(ADTRG)			
			When DDR = $functions as \overline{C}$				
		PG1/CS3/IRQ7/CS6	I/O port				
			When DDR = 0: Also function				
			When DDR = = 1: Also func interrupt input				
		PG0/IRQ6/ADTRG	I/O port also f pin (IRQ6) an (ADTRG)				

Notes: 1. Modes 6 and 7 are not available in the ROMless versions.

- 2. After a reset in mode 6
- 3. After a reset in mode 4 or 5

Port Function Control Register 1 (PFCR1)

Bit	:	7	6	5	4	3	2	1	0
		CSS17	CSS36	PF1CS5S	PF0CS4S	A23E	A22E	A21E	A20E
Initial va	lue :	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR1 is an 8-bit readable/writable register that performs I/O port control. PFCR1 is initialized to H'0F by a reset, and in hardware standby mode.

Bit 7—CS17 Select (CSS17): Selects whether $\overline{CS1}$ or $\overline{CS7}$ is output from the PG3 pin. For details, see section 8.12, Port G.

Bit 6—CS36 Select (CSS36): Selects whether $\overline{CS3}$ or $\overline{CS6}$ is output from the PG1 pin. For details, see section 8.12, Port G.

Bit 5—Port F1 Chip Select 5 Select (PF1CS5S): Selects enabling or disabling of $\overline{CS5}$ output. For details, see section 8.11, Port F.

Bit 4—Port F0 Chip Select 4 Select (PF0CS4S): Selects enabling or disabling of $\overline{CS4}$ output. For details, see section 8.11, Port F.

Bit 3—Address 23 Enable (A23E): Enables or disables address output 23 (A23). This bit is valid in modes 4 to 6.

Bit 3 A23E	Description	
0	P13DR is output when P13DDR = 1	
1	A23 is output when P13DDR = 1	(Initial value)

Bit 2—Address 22 Enable (A22E): Enables or disables address output 22 (A22). This bit is valid in modes 4 to 6.

Bit 2 A22E	Description	
0	P12DR is output when P12DDR = 1	
1	A22 is output when P12DDR = 1	(Initial value)

8.10.2 Register Configuration

Table 8.17 shows the port E register configuration.

Table 8.17 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FEBD
Port E data register	PEDR	R/W	H'00	H'FF6D
Port E register	PORTE	R	Undefined	H'FF5D
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74

Note: * Lower 16 bits of the address.

Port E Data Direction Register (PEDDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

PEDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

• Modes 4 to 6*

When 8-bit bus mode has been selected, port E pins function as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode has been selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

For details of 8-bit and 16-bit bus modes, see section 6, Bus Controller.

• Mode 7*

Setting PEDDR bits to 1 makes the corresponding port E pins output ports, while clearing the bits to 0 makes the pins input ports.

Note: * Modes 6 and 7 are not available in the ROMless versions.

9.1.3 Pin Configuration

Table 9.2 summarizes the TPU pins.

Table 9.2TPU Pins

Channel	Name	Symbol	I/O	Function
All	Clock input A	TCLKA	Input	External clock A input pin (Channel 1 and 5 phase counting mode A phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channel 1 and 5 phase counting mode B phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channel 2 and 4 phase counting mode A phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channel 2 and 4 phase counting mode B phase input)
0	Input capture/out compare match A0	TIOCA0	I/O	TGR0A input capture input/output compare output/PWM output pin
	Input capture/out compare match B0	TIOCB0	I/O	TGR0B input capture input/output compare output/PWM output pin
	Input capture/out compare match C0	TIOCC0	I/O	TGR0C input capture input/output compare output/PWM output pin
	Input capture/out compare match D0	TIOCD0	I/O	TGR0D input capture input/output compare output/PWM output pin
1	Input capture/out compare match A1	TIOCA1	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/out compare match B1	TIOCB1	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/out compare match A2	TIOCA2	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/out compare match B2	TIOCB2	I/O	TGR2B input capture input/output compare output/PWM output pin

Contention between Overflow/Underflow and Counter Clearing: If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

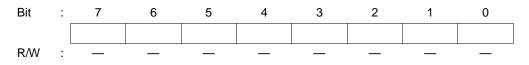
Figure 9.56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

φ		
TCNT input clock		
TCNT	H'FFFF H'0000	
Counter clear signal		
TGF		
TCFV flag	Prohibited	

Figure 9.56 Contention between Overflow and Counter Clearing

12.1.4 Register Configuration

The SCI has the internal registers shown in table 12.2. These registers are used to specify asynchronous mode or synchronous mode, the data format, and the bit rate, and to control the transmitter/receiver.


Table 12.2 SCI Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*2
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*1	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*1	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
All	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Notes: 1. Can only be written with 0 for flag clearing.

2. Lower 16 bits of the address.

12.2.3 Transmit Shift Register (TSR)

TSR is a register used to transmit serial data.

To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1.

TSR cannot be directly read or written to by the CPU.

12.2.4 Transmit Data Register (TDR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

TDR is an 8-bit register that stores data for serial transmission.

When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.

TDR is initialized to H'FF by a reset, and in standby mode or module stop mode.

Serial data transmission (synchronous mode): Figure 12.16 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

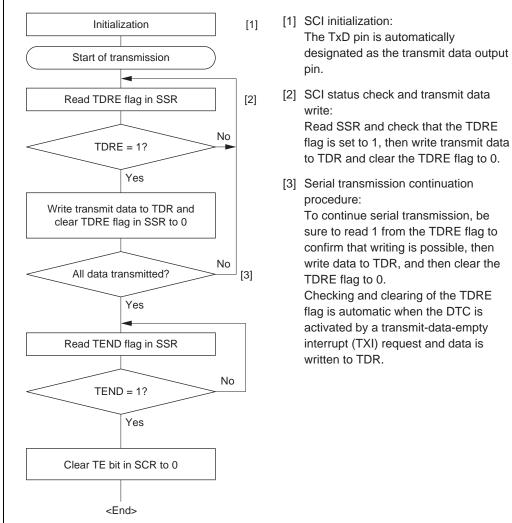


Figure 12.16 Sample Serial Transmission Flowchart

17.20.6 Auto-Erase Mode

- Auto-erase mode supports only total memory erasing.
- Do not perform a command write during auto-erasing.
- Confirm normal end of auto-erasing by checking I/O₆. Alternatively, status read mode can also be used for this purpose (the I/O₇ status polling pin is used to identify the end of an auto-erase operation).
- Status polling I/O₆ and I/O₇ pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling CE and OE.

AC Characteristics

Table 17.41 AC Characteristics in Auto-Erase Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Item	Symbol	Min	Max	Unit
Command write cycle	t _{nxtc}	20	—	μs
CE hold time	t _{ceh}	0		ns
CE setup time	t _{ces}	0	—	ns
Data hold time	t _{dh}	50	_	ns
Data setup time	t _{ds}	50		ns
Write pulse width	t _{wep}	70	—	ns
Status polling start time	t _{ests}	1		ms
Status polling access time	t _{spa}	_	150	ns
Memory erase time	t _{erase}	100	40000	ms
WE rise time	t _r	_	30	ns
WE fall time	t _f	_	30	ns

17.28.1 Pin Arrangement of the Socket Adapter

Attach the socket adapter to the LSI in the way shown in figure 17.81. This allows conversion to 40 pins. Figure 17.80 shows the memory mapping of the on-chip ROM, and figure 17.81 shows the arrangement of the socket adapter's pins.

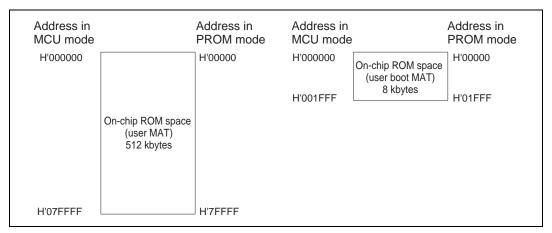


Figure 17.80 Mapping of On-Chip Flash Memory

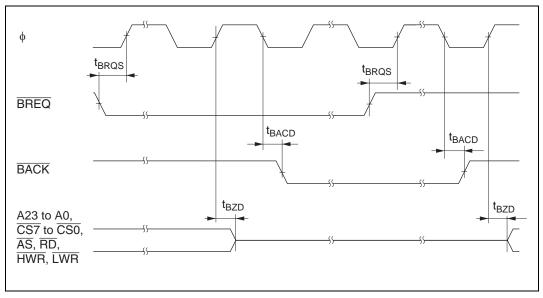


Figure 20.11 External Bus Release Timing

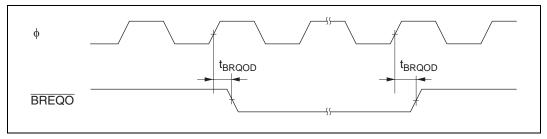


Figure 20.12 External Bus Request Output Timing

20.2 Electrical Characteristics of F-ZTAT Versions (H8S/2319 F-ZTAT, H8S/2319E F-ZTAT, H8S/2318 F-ZTAT, H8S/2317 F-ZTAT, H8S/2315 F-ZTAT, H8S/2314 F-ZTAT)

20.2.1 Absolute Maximum Ratings

Table 20.10 Absolute Maximum Ratings

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Item	Symbol	Value	Unit			
Power supply voltage	V _{CC}	-0.3 to +4.3	V			
Input voltage (FWE, EMLE)	V _{in}	–0.3 to V _{CC} +0.3	V			
Input voltage (except port 4)	Vin	–0.3 to V _{CC} +0.3	V			
Input voltage (port 4)	Vin	-0.3 to AV _{CC} +0.3	V			
Reference power supply voltage	V _{ref}	–0.3 to AV _{CC} +0.3	V			
Analog power supply voltage	AV _{CC}	-0.3 to +4.3	V			
Analog input voltage	V _{AN}	–0.3 to AV _{CC} +0.3				
Operating temperature	T _{opr}	Regular specifications: -20 to +75*	°C			
		Wide-range specifications: -40 to $+85^*$	°C			
Storage temperature	T _{stg}	-55 to +125	°C			

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

Note: * Condition B: The operating temperature ranges for flash memory programming/erasing are $T_a = 0^{\circ}C$ to +75°C (regular specifications), and $T_a = 0^{\circ}C$ to +85°C (wide-range specifications).

A.3 Operation Code Map

Table A.3 shows the operation code map.

Table A.3Operation Code Map (1)

	ш	DX Table A.3(2)				IT BLE	JSR		(3)																																										
	ш	ADDX	SUBX			BGT	Sſ		Table A.3(3)	ole A.3																																									
		2	CMP			BLT		MOV	Та																																										
	U	MOV			BGE	BGE	BSR																																												
3H is 0. 3H is 1.	ш	Table A.3(2)	Table A.3(2)			BMI			EEPMOV																																										
 Instruction when most significant bit of BH is 0. Instruction when most significant bit of BH is 1. 	A	Table A.3(2)	Table A.3(2)			BPL	JMP	Table A.3(2)	Table A.3(2)																																										
	6	ADD	SUB		MOV.B	BVS	Table A.3(2)		MOV	Table A.3(2)																																									
	8	AD	SL			BVC		A.3(2	MOV	ADD	ADDX	CMP	SUBX	OR	R	g	MOV																																		
 Instructio Instructio 	7	LDC	Table A.3(2)	O W		BEQ	TRAPA	BST BIST		AD	ADI	CV	SU	0	XOR	AND	M																																		
1st byte 2nd byte AH AL BH BL	9	ANDC	AND													BNE	RTE	AND	BAND BIAND																																
	5	XORC	XOR			BCS	BSR	~	BOR BXOR BIOR BIXOR	BIOR																																									
	4	ORC	OR			BCC	RTS	OR																																											
	e	LDC *	Table A.3(2)			-																																	BLS	DIVXU	1010										
	2	STC 1	Table A.3(2)						BHI	MULXU	i C	BCLK									the chip.																														
	-	Table A.3(2)	Table A.3(2)			BRN	DIVXU	H C	BNU									Note: * Cannot be used in the chip.																																	
Instruction code	0	NOP	Table A.3(2)			BRA	MULXU		BOEL									Cannot k																																	
Instructi	AHAL	0	-	2	3	4	5	9	7	80	6	٨	ш	U	Δ	ш	ш	Note: *																																	

RENESAS

Instruction	nstruction H N Z V C				С	Definition				
SUB	¢	¢	\$	¢	¢	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$				
						N = Rm				
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$				
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$				
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$				
SUBS					_					
SUBX	SUBX ↓ ↓ ↓		\$	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$					
						N = Rm				
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$				
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$				
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$				
TAS	_	\$	\$	0	_	N = Dm				
						$Z = \overline{Dm} \cdot \overline{Dm-1} \cdot \dots \cdot \overline{D0}$				
TRAPA				_	_					
XOR	_	¢	¢	0	_	N = Rm				
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$				
XORC	¢	¢	¢	¢	\$	Stores the corresponding bits of the result.				
						No flags change when the operand is EXR.				

TIOR3L—Timer I/O Control Register 3L

H'FE83

TPU3

Bit :	7	6	5	4	3	2	1	0
	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

0	0	0	0	TGR3C	Output disabled			
			1	is output compare register*1	Initial output is	0 output at compare match		
		1	0	register*1	0 output	1 output at compare match		
			1]		Toggle output at compare match		
	1	0	0]	Output disabled			
			1	1	Initial output is 1	0 output at compare match		
			1	0	1	output	1 output at compare match	
			1	1		Toggle output at compare match		
1	0	0	0	TGR3C	Capture input	Input capture at rising edge		
			1	is input capture	source is TIOCC3 pin	Input capture at falling edge		
		1		capture register*		Input capture at both edges		
-	1	s			Capture input source is channel 4/count clock	Input capture at TCNT4 count-up count-down		

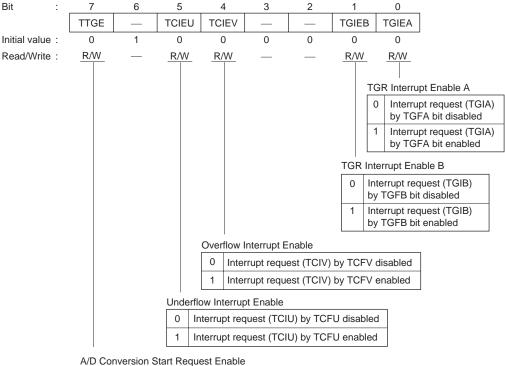
: Don't care

Note: * When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

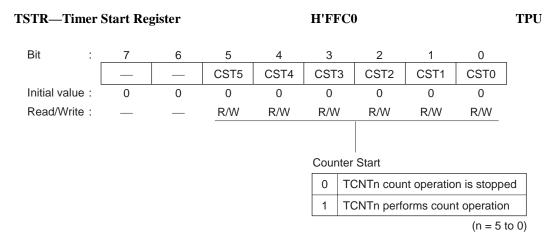
TGR3D I/O Control

0	0	0	0	TGR3D	Output disabled		
				1	is output compare	Initial output is 0 output	0 output at compare match
			1	0	register *2	oulput	1 output at compare match
				1			Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR3D	Capture input source is	Input capture at rising edge
				1	is input capture	TIOCD3 pin	Input capture at falling edge
			1		register *2		Input capture at both edges
		1			-	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down*1

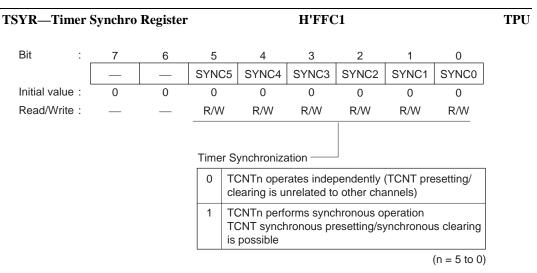
: Don't care


- Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and ∲/1 is used as the TCNT4 count clock, this setting is invalid and input capture does not occur.
 - When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.


TIER5—Timer Interrupt Enable Register 5

H'FEA4



0	A/D conversion start request generation disabled	
1	A/D conversion start request generation enabled	1

Rev.7.00 Feb. 14, 2007 page 977 of 1108 REJ09B0089-0700

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

- Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.
 - 2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

RENESAS