

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | H8S/2000                                                                      |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 25MHz                                                                         |
| Connectivity               | SCI, SmartCard                                                                |
| Peripherals                | POR, PWM, WDT                                                                 |
| Number of I/O              | 70                                                                            |
| Program Memory Size        | 512KB (512K x 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                                   |
| Data Converters            | A/D 8x10b; D/A 2x8b                                                           |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 100-BQFP                                                                      |
| Supplier Device Package    | 100-QFP (14x20)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/df2319evf25v |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Item                                       | Page | Revision (See Manual for Details)                                                                                                                                  |                                 |                                   |                                   |                           |  |  |
|--------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------|--|--|
| 17.8.3 Error                               | 604  | Description amended                                                                                                                                                |                                 |                                   |                                   |                           |  |  |
| Protection                                 |      | (Before) • When a bus master other than the CPU (the DMAC or DTC) has control $\rightarrow$ (After) • When a bus master other than the CPU (the DTC) has control   |                                 |                                   |                                   |                           |  |  |
| 17.11.2 Socket                             | 609  | Description a                                                                                                                                                      | added                           |                                   |                                   |                           |  |  |
| Adapters and Memory<br>Map                 |      | In programm<br>fit a 40-pin s                                                                                                                                      | ner mode, f<br>ocket. Figure    | figure 17.21.<br>17.20 shows      | This enables<br>s                 | the chip to               |  |  |
| 17.13.1 Features                           | 629  | Description a                                                                                                                                                      | amended                         |                                   |                                   |                           |  |  |
|                                            |      | Reprogram                                                                                                                                                          | nming capabi                    | lity                              |                                   |                           |  |  |
|                                            |      | The flash me<br>times.                                                                                                                                             | emory can be                    | e reprogramm                      | ned a minimu                      | im of 100                 |  |  |
| 17.17.3 Error                              | 664  | Description a                                                                                                                                                      | amended                         |                                   |                                   |                           |  |  |
| Protection                                 |      | (Before) • When a bus master other than the CPU (the DMAC or DTC) has control $\rightarrow$ (After) • When a bus master other than the CPU (the DTC) has control   |                                 |                                   |                                   |                           |  |  |
| 17.20.2 Socket                             | 670  | Description added                                                                                                                                                  |                                 |                                   |                                   |                           |  |  |
| Adapters and Memory<br>Map                 |      | In programmer mode, figure 17.51. This enables the chip to fit a 40-pin socket. Figure 17.50 shows                                                                 |                                 |                                   |                                   |                           |  |  |
| 17.22.1 Features                           | 686  | Description amended                                                                                                                                                |                                 |                                   |                                   |                           |  |  |
|                                            |      | Protection modes                                                                                                                                                   |                                 |                                   |                                   |                           |  |  |
|                                            |      | There are three protection modes: software protection by the register setting, hardware protection by reset/hardware standby, and error protection. The protection |                                 |                                   |                                   |                           |  |  |
| 17.22.4 Mode                               | 690  | Table 17.46                                                                                                                                                        | amended                         |                                   |                                   |                           |  |  |
| Comparison<br>Table 17.46                  |      |                                                                                                                                                                    | Boot mode                       | User program<br>mode              | User boot mode                    | PROM mode                 |  |  |
| Comparison of<br>Programming Modes         |      | Programming/<br>Erasing<br>Environment                                                                                                                             | On-board<br>programming         | On-board<br>programming           | On-board<br>programming           | On-board<br>programming   |  |  |
|                                            |      | Programming/<br>Erasing Enable<br>MAT                                                                                                                              | User MAT<br>User boot MAT       | User MAT                          | User MAT                          | User MAT<br>User boot MAT |  |  |
|                                            |      | Program/Erase<br>Control                                                                                                                                           | Command method                  | Programming/<br>Erasing Interface | Programming/<br>Erasing Interface | Command method            |  |  |
|                                            |      | All Erasure                                                                                                                                                        | ○ (Automatic)                   | 0                                 | 0                                 | O (Automatic)             |  |  |
| 17.23.2                                    | 704  | Description a                                                                                                                                                      | amended                         |                                   |                                   |                           |  |  |
| Programming/Erasing<br>Interface Parameter |      | the CPU e<br>value of th<br>must be                                                                                                                                | except for ER<br>ne registers e | 0 and ER1 a except for ER         | re stored. Th<br>0 and ER1, t     | e return<br>he stack area |  |  |



Figure 2.12 State Transitions

#### 2.8.2 Reset State

When the  $\overline{\text{RES}}$  input goes low all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the  $\overline{\text{RES}}$  signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 11, Watchdog Timer.

As shown in table 5.3, multiple interrupts are assigned to one IPR. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 6 to 4 and 2 to 0 sets the priority of the corresponding interrupt. The lowest priority level, level 0, is assigned by setting H'0, and the highest priority level, level 7, by setting H'7.

When interrupt requests are generated, the highest-priority interrupt according to the priority levels set in the IPR registers is selected. This interrupt level is then compared with the interrupt mask level set by the interrupt mask bits (I2 to I0) in the extend register (EXR) in the CPU, and if the priority level of the interrupt is higher than the set mask level, an interrupt request is issued to the CPU.

### 5.2.3 IRQ Enable Register (IER)

| Bit          | :    | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|              |      | IRQ7E | IRQ6E | IRQ5E | IRQ4E | IRQ3E | IRQ2E | IRQ1E | IRQ0E |
| Initial valu | ie : | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W          | :    | R/W   |

IER is an 8-bit readable/writable register that controls enabling and disabling of interrupt requests IRQ7 to IRQ0.

IER is initialized to H'00 by a reset and in hardware standby mode.

**Bits 7 to 0—IRQ7 to IRQ0 Enable (IRQ7E to IRQ0E):** These bits select whether IRQ7 to IRQ0 are enabled or disabled.

| Bit n<br>IRQnE | Description              |                 |
|----------------|--------------------------|-----------------|
| 0              | IRQn interrupts disabled | (Initial value) |
| 1              | IRQn interrupts enabled  |                 |
|                |                          | (n = 7 to 0)    |

|      | 1st T | ransfer |       |      | 2nd T | ransfer |       |                          |
|------|-------|---------|-------|------|-------|---------|-------|--------------------------|
| CHNE | CHNS  | DISEL   | CR    | CHNE | CHNS  | DISEL   | CR    | DTC Transfer             |
| 0    | _     | 0       | Not 0 | _    | _     | _       | —     | Ends at 1st transfer     |
| 0    | _     | 0       | 0     | _    | _     | _       | —     | Ends at 1st transfer     |
| 0    | _     | 1       | _     | _    | _     | _       | _     | Interrupt request to CPU |
| 1    | 0     | _       | _     | 0    | _     | 0       | Not 0 | Ends at 2nd transfer     |
|      |       |         |       | 0    | _     | 0       | 0     | Ends at 2nd transfer     |
|      |       |         |       | 0    | _     | 1       | _     | Interrupt request to CPU |
| 1    | 1     | 0       | Not 0 | _    | _     | _       | _     | Ends at 1st transfer     |
| 1    | 1     | _       | 0     | 0    | _     | 0       | Not 0 | Ends at 2nd transfer     |
|      |       |         |       | 0    | _     | 0       | 0     | Ends at 2nd transfer     |
|      |       |         |       | 0    | _     | 1       | _     | Interrupt request to CPU |
| 1    | 1     | 1       | Not 0 | _    | _     | _       | —     | Ends at 1st transfer     |
|      |       |         |       |      |       |         |       | Interrupt request to CPU |

# Table 7.2 Chain Transfer Conditions

The DTC transfer mode can be normal mode, repeat mode, or block transfer mode.

The 24-bit SAR designates the DTC transfer source address and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed.

Table 7.3 outlines the functions of the DTC.



# Table 7.3DTC Functions

|           |                                                                                                                                                                                                                                         |   |                                        | Addres             | s Registers             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------|--------------------|-------------------------|
| Transf    | er Mode                                                                                                                                                                                                                                 | A | ctivation Source                       | Transfer<br>Source | Transfer<br>Destination |
| • Nor<br> | mal mode<br>One transfer request transfers one byte<br>or one word                                                                                                                                                                      | • | IRQ<br>TPU TGI<br>8-bit timer CMI      | 24 bits            | 24 bits                 |
| _         | Memory addresses are incremented<br>or decremented by 1 or 2<br>Up to 65,536 transfers possible                                                                                                                                         | • | SCI TXI or RXI<br>A/D converter<br>ADI |                    |                         |
| • Rep<br> | Deat mode<br>One transfer request transfers one byte<br>or one word<br>Memory addresses are incremented<br>or decremented by 1 or 2<br>After the specified number of transfers<br>(1 to 256), the initial state resumes and             | • | Software                               |                    |                         |
| • Bloo    | operation continues<br>ck transfer mode<br>One transfer request transfers a block<br>of the specified size<br>Block size is from 1 to 256 bytes or words<br>Up to 65,536 transfers possible<br>A block area can be designated at either |   |                                        |                    |                         |

• Free-running count operation and periodic count operation

Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.



Figure 9.7 illustrates free-running counter operation.



When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 9.8 illustrates periodic counter operation.

# 10.3 Operation

#### 10.3.1 TCNT Incrementation Timing

TCNT is incremented by input clock pulses (either internal or external).

**Internal Clock:** Three different internal clock signals ( $\phi/8$ ,  $\phi/64$ , or  $\phi/8192$ ) divided from the system clock ( $\phi$ ) can be selected, by setting bits CKS2 to CKS0 in TCR. Figure 10.2 shows the count timing.



Figure 10.2 Count Timing for Internal Clock Input

**External Clock:** Three incrementation methods can be selected by setting bits CKS2 to CKS0 in TCR: at the rising edge, the falling edge, and both rising and falling edges.

Note that the external clock pulse width must be at least 1.5 states for incrementation at a single edge, and at least 2.5 states for incrementation at both edges. The counter will not increment correctly if the pulse width is less than these values.

Figure 10.3 shows the timing of incrementation at both edges of an external clock signal.

# Section 11 Watchdog Timer

# 11.1 Overview

The chip has a single-channel on-chip watchdog timer (WDT) for monitoring system operation. The WDT outputs an overflow signal  $(\overline{WDTOVF})^*$  if a system crash prevents the CPU from writing to the timer counter, allowing it to overflow. At the same time, the WDT can also generate an internal reset signal for the chip.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

Note: \* The  $\overline{WDTOVF}$  function is not available in the F-ZTAT versions.

#### 11.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
- WDTOVF output when in watchdog timer mode\* If the counter overflows, the WDT outputs WDTOVF. It is possible to select whether or not the entire chip is reset at the same time
- Interrupt generation when in interval timer mode If the counter overflows, the WDT generates an interval timer interrupt
- Choice of eight counter clock sources

Note: \* The  $\overline{WDTOVF}$  function is not available in the F-ZTAT versions.

# Section 12 Serial Communication Interface (SCI)

# 12.1 Overview

The chip is equipped with a serial communication interface (SCI) that can handle both asynchronous and synchronous serial communication. A function is also provided for serial communication between processors (multiprocessor communication function).

#### 12.1.1 Features

SCI features are listed below.

- Choice of asynchronous or synchronous serial communication mode
  - Asynchronous mode
  - Serial data communication executed using an asynchronous system in which synchronization is achieved character by character
  - Serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA)
  - A multiprocessor communication function is provided that enables serial data communication with a number of processors
  - Choice of 12 serial data transfer formats

| Data length             | : | 7 or 8 bits                         |
|-------------------------|---|-------------------------------------|
| Stop bit length         | : | 1 or 2 bits                         |
| Parity                  | : | Even, odd, or none                  |
| Multiprocessor bit      | : | 1 or 0                              |
| Receive error detection | : | Parity, overrun, and framing errors |
|                         |   |                                     |

- Break detection : Break can be detected by reading the RxD pin level directly in case of a framing error

Synchronous mode

- Serial data communication synchronized with a clock
- Serial data communication can be carried out with other chips that have a synchronous communication function
- One serial data transfer format

Data length : 8 bits

- Receive error detection : Overrun errors detected

# **Bit 3—Smart Card Data Transfer Direction (SDIR):** Selects the serial/parallel conversion format.

This bit is valid when 8-bit data is used as the transmit/receive format.

| Bit 3<br>SDIR | Description                             |                 |  |  |  |
|---------------|-----------------------------------------|-----------------|--|--|--|
| 0             | TDR contents are transmitted LSB-first  | (Initial value) |  |  |  |
|               | Receive data is stored in RDR LSB-first |                 |  |  |  |
| 1             | TDR contents are transmitted MSB-first  |                 |  |  |  |
|               | Receive data is stored in RDR MSB-first |                 |  |  |  |

**Bit 2—Smart Card Data Invert (SINV):** Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit(s): parity bit inversion requires inversion of the  $O/\overline{E}$  bit in SMR.

| Bit 2<br>SINV | Description                                                |  |  |  |  |  |
|---------------|------------------------------------------------------------|--|--|--|--|--|
| 0             | TDR contents are transmitted without modification (Initial |  |  |  |  |  |
|               | Receive data is stored in RDR without modification         |  |  |  |  |  |
| 1             | TDR contents are inverted before being transmitted         |  |  |  |  |  |
|               | Receive data is stored in RDR in inverted form             |  |  |  |  |  |

Bit 1—Reserved: This bit cannot be modified and is always read as 1.

**Bit 0—Smart Card Interface Mode Select (SMIF):** When the smart card interface operates as a normal SCI, 0 should be written to this bit.

| Bit 0<br>SMIF | Description                                                     |                 |
|---------------|-----------------------------------------------------------------|-----------------|
| 0             | Operates as normal SCI (smart card interface function disabled) | (Initial value) |
| 1             | Smart card interface function enabled                           |                 |

**Bit 3—Flash Memory Control Register Enable (FLSHE):** Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). Writing 1 to the FLSHE bit enables the flash memory control registers to be read and written to. Clearing FLSHE to 0 designates these registers as unselected (the register contents are retained).

| Bit 3<br>FLSHE | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| 0              | Flash control registers are not selected for addresses H'FFFFC8 to H'FFFFCB (Initial value) |
| 1              | Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB                     |

Bits 2 to 0—Reserved: These bits cannot be modified and are always read as 0.

#### 17.5.6 RAM Emulation Register (RAMER)

| Bit         | :    | 7 | 6 | 5 | 4 | 3    | 2    | 1    | 0    |
|-------------|------|---|---|---|---|------|------|------|------|
|             |      |   | — | — | — | RAMS | RAM2 | RAM1 | RAM0 |
| Initial val | ue : | 0 | 0 | 0 | 0 | 0    | 0    | 0    | 0    |
| R/W         | :    | — |   | — | _ | R/W  | R/W  | R/W  | R/W  |

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 17.8. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Note: RAM emulation function is not supported in the H8S/2314 F-ZTAT.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

# 17.14 Register Descriptions

| Bit             | : | 7    | 6    | 5    | 4    | 3   | 2   | 1   | 0   |
|-----------------|---|------|------|------|------|-----|-----|-----|-----|
|                 |   | FWE1 | SWE1 | ESU1 | PSU1 | EV1 | PV1 | E1  | P1  |
| Initial value : |   | 1    | 0    | 0    | 0    | 0   | 0   | 0   | 0   |
| R/W             | : | R    | R/W  | R/W  | R/W  | R/W | R/W | R/W | R/W |

#### 17.14.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for addresses H'000000 to H'03FFFF is entered by setting SWE1 to 1 then setting the EV1 or PV1 bit. Program mode for addresses H'000000 to H'03FFFF is entered by setting SWE1 to 1 then setting the PSU1 bit, and finally setting the P1 bit. Erase mode for addresses H'000000 to H'03FFFF is entered by setting SWE1 to 1 then setting the ESU1 bit, and finally setting the E1 bit. FLMCR1 is initialized to H'80 by a reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes to bits ESU1, PSU1, EV1, and PV1 only when SWE1 = 1; writes to the E1 bit only when SWE1 = 1, and ESU1 = 1; and writes to the P1 bit only when SWE1 = 1, and PSU1 = 1.

**Bit 7—Flash Write Enable Bit (FWE):** Sets hardware protection against flash memory programming/erasing. This bit cannot be modified and is always read as 1 in this model.

**Bit 6—Software Write Enable Bit 1 (SWE1):** Enables or disables flash memory programming and erasing for addresses H'000000 to H'03FFFF. This bit should be set when setting FLMCR1 bits 5 to 0, EBR1 bits 7 to 0, and EBR2 bits 3 to 0.

When SWE1 = 1, the flash memory can only be read in program-verify or erase-verify mode.

| Bit 6<br>SWE1 | Description     |                 |
|---------------|-----------------|-----------------|
| 0             | Writes disabled | (Initial value) |
| 1             | Writes enabled  |                 |

# 17.20 Flash Memory Programmer Mode

#### 17.20.1 Programmer Mode Setting

Programs and data can be written and erased in programmer mode as well as in the on-board programming modes. In programmer mode, the on-chip ROM can be freely programmed using a PROM programmer that supports the Renesas Technology microcomputer device type with 512-kbyte on-chip flash memory (FZTAT512V3A). Flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported with this device type. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

Table 17.34 shows programmer mode pin settings.

| Pin Names                              | Settings/External Circuit Connection                    |
|----------------------------------------|---------------------------------------------------------|
| Mode pins: MD2, MD1, MD0               | Low-level input                                         |
| Mode setting pins: PF2, PF1, PF0       | High-level input to PF2, low-level input to PF1 and PF0 |
| STBY pin                               | High-level input (do not select hardware standby mode)  |
| RES pin                                | Reset circuit                                           |
| XTAL, EXTAL pins                       | Oscillator circuit                                      |
| Other pins requiring setting: P23, P25 | High-level input to P23, low-level input to P25         |

| Table 17.34 | Programmer | Mode | Pin | Settings |
|-------------|------------|------|-----|----------|
|-------------|------------|------|-----|----------|

| One-Byte Command Command or Response |                     |            |  |  |  |  |  |  |  |
|--------------------------------------|---------------------|------------|--|--|--|--|--|--|--|
| n-Byte Command or<br>n-Byte Response | Data                |            |  |  |  |  |  |  |  |
|                                      | Size Checksu        |            |  |  |  |  |  |  |  |
|                                      | Command or Response |            |  |  |  |  |  |  |  |
| Error Response                       | Error Code          |            |  |  |  |  |  |  |  |
| 128-Byte Programming                 | Address Data (n b   | ytes)      |  |  |  |  |  |  |  |
|                                      | Command             | Checksum — |  |  |  |  |  |  |  |
|                                      |                     |            |  |  |  |  |  |  |  |
| Memory Read                          | Size Data           |            |  |  |  |  |  |  |  |
| Response                             | Response            | Checksum — |  |  |  |  |  |  |  |
|                                      |                     |            |  |  |  |  |  |  |  |

Figure 17.84 Communication Protocol Format

- Command (1 byte): Commands including inquiries, selection, programming, erasing, and checking
- Response (1 byte): Response to an inquiry
- Size (1 byte): The amount of data for transmission excluding the command, amount of data, and checksum
- Checksum (1 byte): The checksum is calculated so that the total of all values from the command byte to the SUM byte becomes H'00
- Data (n bytes): Detailed data of a command or response
- Error Response (1 byte): Error response to a command
- Error Code (1 byte): Type of the error
- Address (4 bytes): Address for programming
- Data (n bytes): Data to be programmed (the size is indicated in the response to the programming unit inquiry.)
- Size (4 bytes): Four-byte response to a memory read

# **19.5** Module Stop Mode

#### 19.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 19.3 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the module starts operating at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI and A/D converter are retained.

After reset clearance, all modules other than DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

Do not make a transition to sleep mode with MSTPCR set to H'FFFF or H'EFFF, as this will halt operation of the bus controller.



Figure 20.7 Basic Bus Timing (3-State Access)

| IOV.W 4 If R4≠0<br>Repeat @ER5→@ER6<br>ER5+1→ER5<br>ER6+1→ER6<br>R4-1→R4<br>Until R4=0<br>else next;                                                                                                    | OV.B - 4 if R4L≠0<br>Repeat @ER5→@ER6<br>ER5+1→ER5<br>ER6+1→ER6<br>R4L-1→R4L<br>Until R4L=0<br>else next; | Operand Size           #xx           @.eRn)           @.eRn)           @.eration                                                                                                                                                                                                                                                                                                                                                                                                                                        | Addressing Mode/<br>Instruction Length (Bytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Andition     Code       H     N     Z     V       I     I     Z     V       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I     I     I       I     I |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mber of states is the number of states required for execution when the instruction and its o initial value of R4L or R4.<br>sister ER0. ER1. ER4. or ER5 should be used when using the TAS instruction. | OV.W                                                                                                      | IOV.B     -     -     4     if R4L≠0       Repeat @ER5→@ER6     ER5+1→ER5     ER6+1→ER6       Ref+1→R4L     Until R4L=0       Until R4L=0     else next;       IOV.W     -     4     if R4≠0       IOV.W     -     4     if R4≠0       Intil R4L=0     else next;     1     4       Intil R4L=0     else next;     1       Intil R4L=0     else next;     1 | nonic     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R   | for f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                         | OV.W — 4 if R4≠0<br>Repeat @ER5→@ER6<br>ER5+1→ER5<br>ER6+1→ER6<br>R4-1→R4<br>Until R4=0<br>else next;     | IOV.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jonic         Jonic         Jonic           IOV/B         10V/B         #xx           Rn         8           Rn         6           Rn         6           Rn         6           Rn         6           Rn         8           Rn         6           Rn         6           Rn         8           Rn         8 | oers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(8) Block Transfer Instructions

| Address | Register<br>Name | Bit 7  | Bit 6  | Bit 5  | Rit 4  | Rit 3  | Bit 2  | Bit 1  | Bit 0  | Module<br>Name | Data<br>Bus<br>Width |
|---------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|----------------------|
|         | TCR4             | _      |        |        | CKEG   | CKEGO  | TPSC2  | TPSC1  | TPSCO  | трии           | 16 bits              |
| H'FE91  | TMDR4            | _      | _      | _      | _      | MD3    | MD2    | MD1    | MD0    | -              | 10 013               |
| H'FE92  | TIOR4            | IOB3   | IOB2   | IOB1   |        | 1043   | 1042   |        |        | -              |                      |
|         |                  | TTGE   | 1002   |        |        | 1073   | 1042   |        |        | -              |                      |
|         |                  | TCED   |        | TCEU   | TCEV   |        |        | TGER   | TGEA   | -              |                      |
|         |                  | TOTE   | _      | 1010   |        | _      |        | IGIB   | IGIA   | -              |                      |
| H'EE07  |                  |        |        |        |        |        |        |        |        | -              |                      |
|         | TCP4A            |        |        |        |        |        |        |        |        | -              |                      |
|         | -                |        |        |        |        |        |        |        |        | -              |                      |
| H'FE9A  | TGR4B            |        |        |        |        |        |        |        |        | -              |                      |
| H'FE9B  | _                |        |        |        |        |        |        |        |        | -              |                      |
| H'FEA0  | TCR5             | _      | CCLR1  | CCLR0  | CKEG1  | CKEG0  | TPSC2  | TPSC1  | TPSC0  | TPU5           | 16 bits              |
| H'FEA1  | TMDR5            | _      | _      | _      | _      | MD3    | MD2    | MD1    | MD0    | -              |                      |
| H'FEA2  | TIOR5            | IOB3   | IOB2   | IOB1   | IOB0   | IOA3   | IOA2   | IOA1   | IOA0   | -              |                      |
| H'FEA4  | TIER5            | TTGE   | _      | TCIEU  | TCIEV  | _      | _      | TGIEB  | TGIEA  | -              |                      |
| H'FEA5  | TSR5             | TCFD   | _      | TCFU   | TCFV   | _      | _      | TGFB   | TGFA   | _              |                      |
| H'FEA6  | TCNT5            |        |        |        |        |        |        |        |        | -              |                      |
| H'FEA7  | _                |        |        |        |        |        |        |        |        | -              |                      |
| H'FEA8  | TGR5A            |        |        |        |        |        |        |        |        | -              |                      |
| H'FEA9  | _                |        |        |        |        |        |        |        |        | -              |                      |
| H'FEAA  | TGR5B            |        |        |        |        |        |        |        |        | -              |                      |
| H'FEAB  | _                |        |        |        |        |        |        |        |        | -              |                      |
| H'FEB0  | P1DDR            | P17DDR | P16DDR | P15DDR | P14DDR | P13DDR | P12DDR | P11DDR | P10DDR | Ports          | 8 bits               |
| H'FEB1  | P2DDR            | P27DDR | P26DDR | P25DDR | P24DDR | P23DDR | P22DDR | P21DDR | P20DDR | -              |                      |
| H'FEB2  | P3DDR            | _      | _      | P35DDR | P34DDR | P33DDR | P32DDR | P31DDR | P30DDR | -              |                      |
| H'FEB9  | PADDR            | —      | —      | —      | —      | PA3DDR | PA2DDR | PA1DDR | PA0DDR | -              |                      |
| H'FEBA  | PBDDR            | PB7DDR | PB6DDR | PB5DDR | PB4DDR | PB3DDR | PB2DDR | PB1DDR | PB0DDR | _              |                      |
| H'FEBB  | PCDDR            | PC7DDR | PC6DDR | PC5DDR | PC4DDR | PC3DDR | PC2DDR | PC1DDR | PC0DDR | -              |                      |
| H'FEBC  | PDDDR            | PD7DDR | PD6DDR | PD5DDR | PD4DDR | PD3DDR | PD2DDR | PD1DDR | PD0DDR | -              |                      |
| H'FEBD  | PEDDR            | PE7DDR | PE6DDR | PE5DDR | PE4DDR | PE3DDR | PE2DDR | PE1DDR | PE0DDR | -              |                      |
| H'FEBE  | PFDDR            | PF7DDR | PF6DDR | PF5DDR | PF4DDR | PF3DDR | PF2DDR | PF1DDR | PF0DDR | -              |                      |
| H'FEBF  | PGDDR            | —      | _      | _      | PG4DDR | PG3DDR | PG2DDR | PG1DDR | PG0DDR | -              |                      |

#### Appendix B Internal I/O Registers

|         | Register |                          |                           |       |                           |                             |                           |       |       | Module              | Data<br>Bus |
|---------|----------|--------------------------|---------------------------|-------|---------------------------|-----------------------------|---------------------------|-------|-------|---------------------|-------------|
| Address | Name     | Bit 7                    | Bit 6                     | Bit 5 | Bit 4                     | Bit 3                       | Bit 2                     | Bit 1 | Bit 0 | Name                | Width       |
| H'FF78  | SMR0     | C/Ā/<br>GM <sup>*3</sup> | CHR/<br>BLK <sup>*4</sup> | PE    | O/Ē                       | STOP/<br>BCP1 <sup>*5</sup> | MP/<br>BCP0 <sup>*6</sup> | CKS1  | CKS0  | SCI0,<br>smart card | 8 bits      |
| H'FF79  | BRR0     |                          |                           |       |                           |                             |                           |       |       | interface 0         |             |
| H'FF7A  | SCR0     | TIE                      | RIE                       | TE    | RE                        | MPIE                        | TEIE                      | CKE1  | CKE0  | _                   |             |
| H'FF7B  | TDR0     |                          |                           |       |                           |                             |                           |       |       | _                   |             |
| H'FF7C  | SSR0     | TDRE                     | RDRF                      | ORER  | FER/<br>ERS <sup>*7</sup> | PER                         | TEND                      | MPB   | MPBT  | _                   |             |
| H'FF7D  | RDR0     |                          |                           |       |                           |                             |                           |       |       | _                   |             |
| H'FF7E  | SCMR0    | _                        | _                         | _     | _                         | SDIR                        | SINV                      | _     | SMIF  | _                   |             |
| H'FF80  | SMR1     | C/Ā/<br>GM <sup>*4</sup> | CHR/<br>BLK <sup>*5</sup> | PE    | O/Ē                       | STOP/<br>BCP1 <sup>*6</sup> | MP/<br>BCP0 <sup>*7</sup> | CKS1  | CKS0  | SCI1,<br>smart card | 8 bits      |
| H'FF81  | BRR1     |                          |                           |       |                           |                             |                           |       |       | interface 1         |             |
| H'FF82  | SCR1     | TIE                      | RIE                       | TE    | RE                        | MPIE                        | TEIE                      | CKE1  | CKE0  | _                   |             |
| H'FF83  | TDR1     |                          |                           |       |                           |                             |                           |       |       | _                   |             |
| H'FF84  | SSR1     | TDRE                     | RDRF                      | ORER  | FER/<br>ERS <sup>*8</sup> | PER                         | TEND                      | MPB   | MPBT  | _                   |             |
| H'FF85  | RDR1     |                          |                           |       |                           |                             |                           |       |       | _                   |             |
| H'FF86  | SCMR1    | _                        | _                         | _     | _                         | SDIR                        | SINV                      | _     | SMIF  | _                   |             |
| H'FE90  | ADDRAH   | AD9                      | AD8                       | AD7   | AD6                       | AD5                         | AD4                       | AD3   | AD2   | A/D<br>converter    | 8 bits      |
| H'FE91  | ADDRAL   | AD1                      | AD0                       | _     | _                         | _                           | _                         | _     | _     | _                   |             |
| H'FE92  | ADDRBH   | AD9                      | AD8                       | AD7   | AD6                       | AD5                         | AD4                       | AD3   | AD2   | _                   |             |
| H'FE93  | ADDRBL   | AD1                      | AD0                       | _     | _                         | _                           | _                         | _     | _     | _                   |             |
| H'FE94  | ADDRCH   | AD9                      | AD8                       | AD7   | AD6                       | AD5                         | AD4                       | AD3   | AD2   | _                   |             |
| H'FE95  | ADDRCL   | AD1                      | AD0                       | _     | _                         | _                           | _                         | _     | _     | _                   |             |
| H'FE96  | ADDRDH   | AD9                      | AD8                       | AD7   | AD6                       | AD5                         | AD4                       | AD3   | AD2   | _                   |             |
| H'FE97  | ADDRDL   | AD1                      | AD0                       | —     | —                         | _                           | _                         | _     | —     | _                   |             |
| H'FE98  | ADCSR    | ADF                      | ADIE                      | ADST  | SCAN                      | CKS                         | CH2                       | CH1   | CH0   | _                   |             |
| H'FE99  | ADCR     | TRGS1                    | TRGS0                     | _     | _                         | CKS1                        | _                         | _     | _     |                     |             |

# FTDAR—Flash Transfer Destination Address Register H'FFCA FLASH (Valid only in the H8S/2319C F-ZTAT)

| Bit :                        | 7    | 6    | 5                        | 4   |                                                                                                             | 3                                         | 2          | 1           | 0       |                      |  |  |  |
|------------------------------|------|------|--------------------------|-----|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|-------------|---------|----------------------|--|--|--|
|                              | TDER | TDA6 | TDA5                     | TDA | 4                                                                                                           | TDA3                                      | TDA2       | TDA1        | TDA0    | l                    |  |  |  |
| Initial value :              | 0    | 0    | 0                        | 0   |                                                                                                             | 0                                         | 0          | 0           | 0       |                      |  |  |  |
| Read/Write :                 | R/W  | R/W  | R/W                      | R/V | V                                                                                                           | R/W                                       | R/W        | R/W         | R/W     |                      |  |  |  |
|                              |      |      |                          |     |                                                                                                             |                                           |            |             |         |                      |  |  |  |
| Transfer Destination Address |      |      |                          |     |                                                                                                             |                                           |            |             |         |                      |  |  |  |
|                              |      | Т    | TDA6 to TDA0 Description |     |                                                                                                             |                                           |            |             |         |                      |  |  |  |
|                              |      |      | H'00                     |     |                                                                                                             | Download start address is set to H'FFBC00 |            |             |         |                      |  |  |  |
|                              |      |      | H'01                     |     | Do                                                                                                          | wnload sta                                | art addres | s is set to | H'FFCC0 | )                    |  |  |  |
|                              |      |      | H'02                     |     | Do                                                                                                          | wnload sta                                | art addres | s is set to | H'FFDC0 | )                    |  |  |  |
|                              |      |      | H'03                     |     | Download start address is set to H'FFEC00                                                                   |                                           |            |             |         |                      |  |  |  |
|                              |      |      | H'04 to H'7F             |     | Setting prohibited. If this value is set, the TDER bit (bit 7) is set to 1 to abort the download processing |                                           |            |             |         | DER bit (bit 7)<br>g |  |  |  |
|                              |      |      |                          |     |                                                                                                             |                                           |            |             |         |                      |  |  |  |

Transfer Destination Address Setting Error

| 0 | Setting of TDA6 to TDA0 is normal                                              |  |
|---|--------------------------------------------------------------------------------|--|
| 1 | Setting of TDER and TDA4 to TDA0 is H'04 to H'FF and download has been aborted |  |