

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	70
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2319evte25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ltem	Page	Revision (See Manual for Details)							
17.24.2 User	729	Programming Procedure in User Program Mode:							
Program Mode		Description amended							
		(g) Initialization							
		 The general registers other than ER0 and ER1 are saved in the initialization program. 							
	730	(I) Programming							
		 The general registers other than ER0 and ER1 are saved in the programming program. 							
17.25 Protection	738	Description amended							
		There are three kinds of flash memory program/erase protection: hardware, software protection, and error protection.							
17.29.1 Serial	754	Status							
Communication		Description amended							
Specification for Boot Mode		(2) Inquiry/Selection State							
		required for erasure to the on-chip RAM and erases							
		(3) Programming/erasing state							
		the programming/erasing programs to the on-chip RAM by commands							
	759	Inquiry and Selection States							
		Description amended							
		(2) Device Selection							
		 Size (1 byte): Amount of device-code data This is fixed to 4 							
	760	(3) Clock Mode Inquiry							
		(Before)							
		Response H'31 Size A number of modes Mode SUM							
		(After)							
		Response H'31 Size Mode SUM							
		Size (1 byte): Amount of data that represents the modes							
		 Mode (1 byte): Values of the supported 							

6.3 Overview of Bus Control

6.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16-Mbyte address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external space in area units. Figure 6.2 shows an outline of the area partitioning.

Chip select signals ($\overline{CS0}$ to $\overline{CS7}$) can be output for each area.

Figure 6.2 Overview of Area Partitioning

Port Function Control Register 1 (PFCR1)

Bit	:	7	6	5	4	3	2	1	0
		CSS17	CSS36	PF1CS5S	PF0CS4S	A23E	A22E	A21E	A20E
Initial value	e : .	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR1 is an 8-bit readable/writable register that performs I/O port control. PFCR1 is initialized to H'0F by a reset, and in hardware standby mode.

Bit 7—CS17 Select (CSS17): Selects whether $\overline{CS1}$ or $\overline{CS7}$ is output from the PG3 pin. For details, see section 8.12, Port G.

Bit 6—CS36 Select (CSS36): Selects whether $\overline{CS3}$ or $\overline{CS6}$ is output from the PG1 pin. For details, see section 8.12, Port G.

Bit 5—Port F1 Chip Select 5 Select (PF1CS5S): Selects enabling or disabling of $\overline{CS5}$ output. For details, see section 8.11, Port F.

Bit 4—Port F0 Chip Select 4 Select (PF0CS4S): Selects enabling or disabling of $\overline{CS4}$ output. For details, see section 8.11, Port F.

Bit 3—Address 23 Enable (A23E): Enables or disables address output 23 (A23). This bit is valid in modes 4 to 6.

Bit 3 A23E	Description	
0	P13DR is output when P13DDR = 1	
1	A23 is output when P13DDR = 1	(Initial value)

Bit 2—Address 22 Enable (A22E): Enables or disables address output 22 (A22). This bit is valid in modes 4 to 6.

Bit 2 A22E	Description	
0	P12DR is output when P12DDR = 1	
1	A22 is output when P12DDR = 1	(Initial value)

Pin	Selection Meth	od and Pin Functior	IS					
P33/RxD1	The pin function is switched as shown below according to the combination of bit RE in the SCI1 SCR, and bit P33DDR.							
	RE	()	1				
	P33DDR	0	1	—				
	Pin function	P33 input pin	P33 output pin*	RxD1 input pin				
	Note: * When I	P33ODR = 1, the pin	becomes an NMOS of	open-drain output.				
P32/RxD0	The pin function bit RE in the SC	is switched as shown I0 SCR, and bit P32D	n below according to DDR.	the combination of				
	RE	()	1				
	P32DDR	0	1	—				
	Pin function	P32 input pin P32 output pin*		RxD0 input pin				
	Note: * When P32ODR = 1, the pin becomes an NMOS open-drain output.							
P31/TxD1	The pin function is switched as shown below according to the combination of bit TE in the SCI1 SCR, and bit P31DDR.							
	TE	()	1				
	P31DDR	0	1	—				
	Pin function	P31 input pin	P31 output pin*	TxD1 output pin				
	Note: * When P31ODR = 1, the pin becomes an NMOS open-drain output.							
P30/TxD0	The pin function bit TE in the SC	the combination of						
	TE	()	1				
	P30DDR	0	1	—				
	Pin function	P30 input pin	P30 output pin*	TxD0 output pin				
	Note: * When I	P30ODR = 1, the pin	becomes an NMOS of	ppen-drain output.				

Channel 0: TIER0

9.2.4 Timer Interrupt Enable Registers (TIER)

Channel 3: T	IER3									
Bit :	7	6	5	4	3	2	1	0		
	TTGE	—	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
Initial value :	0	1	0	0	0	0	0	0		
R/W :	R/W	—	—	R/W	R/W	R/W	R/W	R/W		
Channel 1: T	Channel 1: TIER1									
Channel 2: T	IER2									
Channel 4: T	IER4									
Channel 5: T	IER5									
Bit :	7	6	5	4	3	2	1	0		
	TTGE	—	TCIEU	TCIEV	—	—	TGIEB	TGIEA		
Initial value :	0	1	0	0	0	0	0	0		
R/W :	R/W		R/W	R/W	_		R/W	R/W		

The TIER registers are 8-bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7 TTGE	Description	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Bits 5 to 0—Counter Start 5 to 0 (CST5 to CST0): These bits select operation or stoppage for TCNT.

Bit n CSTn	Description	
0	TCNTn count operation is stopped	(Initial value)
1	TCNTn performs count operation	

n = 5 to 0

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

9.2.9 Timer Synchro Register (TSYR)

Bit	:	7	6	5	4	3	2	1	0
		—	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value	: -	0	0	0	0	0	0	0	0
R/W	:	—	—	R/W	R/W	R/W	R/W	R/W	R/W

TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 4 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

TSYR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 and 6—Reserved: Must always be written with 0.

Bits 5 to 0—Timer Synchro 5 to 0 (SYNC5 to SYNC0): These bits select whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, synchronous presetting of multiple channels^{*1}, and synchronous clearing through counter clearing on another channel^{*2} are possible.

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

Buffer Operation Timing: Figures 9.40 and 9.41 show the timing in buffer operation.

Figure 9.40 Buffer Operation Timing (Compare Match)

Figure 9.41 Buffer Operation Timing (Input Capture)

Contention between Buffer Register Write and Compare Match: If a compare match occurs in the T_2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write.

Figure 9.52 shows the timing in this case.

Figure 9.52 Contention between Buffer Register Write and Compare Match

Serial data transmission (asynchronous mode): Figure 12.5 shows a sample flowchart for serial transmission.

The following procedure should be used for serial data transmission.

Figure 12.5 Sample Serial Transmission Flowchart

[1] [1] SCI initialization: The TxD pin is automatically designated as the transmit data output pin. After the TE bit is set to 1. a frame of 1s is output, and transmission is enabled. [2] SCI status check and transmit data write: Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR. Set the MPBT bit in SSR to 0 or 1. Finally, clear the TDRE flag to 0. [3] Serial transmission continuation procedure: To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR, and then clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the

DTC is activated by a transmitdata-empty interrupt (TXI) request, and data is written to TDR.

 [4] Break output at the end of serial transmission: To output a break in serial transmission, set the port DDR to 1, clear DR to 0, then clear the TE bit in SCR to 0.

Figure 12.10 Sample Multiprocessor Serial Transmission Flowchart

13.3 Operation

13.3.1 Overview

The main functions of the smart card interface are as follows.

- One frame consists of 8-bit data plus a parity bit.
- In transmission, a guard time of at least 2 etu (1 etu in block transfer mode) (elementary time unit: the time for transfer of 1 bit) is left between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for one etu period, 10.5 etu after the start bit. (This does not apply to block transfer mode.)
- If the error signal is sampled during transmission, the same data is transmitted automatically after the elapse of 2 etu or longer. (This does not apply to block transfer mode.)
- Only asynchronous communication is supported; there is no synchronous communication function.

Section 13 Smart Card Interface

Figure 13.5 Relation Between Transmit Operation and Internal Registers

Figure 13.6 TEND Flag Generation Timing in Transmission

14.2.2 A/D Control/Status Register (ADCSR)

Bit	:	7	6	5	4	3	2	1	0
		ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A/D conversion operations and shows the status of the operation.

ADCSR is initialized to H'00 by a reset, and in standby mode or module stop mode.

Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.

Bit 7 ADF	Description						
0	[Clearing conditions] (Ini						
	 When 0 is written to the ADF flag after reading ADF = 1 						
	When the DTC is activated by an ADI interrupt and ADDR is read						
1	[Setting conditions]						
	Single mode: When A/D conversion ends						
	Scan mode: When A/D conversion ends on all specified channels						

Bit 6—A/D Interrupt Enable (ADIE): Selects enabling or disabling of interrupt (ADI) requests at the end of A/D conversion.

Bit 6 ADIE	Description					
0	A/D conversion end interrupt (ADI) request disabled	(Initial value)				
1	A/D conversion end interrupt (ADI) request enabled					

Figure 17.15 Program/Program-Verify Flowchart

17.20.2 Socket Adapters and Memory Map

In programmer mode, a socket adapter is connected to the chip as shown in figure 17.51. This enables the chip to fit a 40-pin socket. Figure 17.50 shows the on-chip ROM memory map and figure 17.51 shows the socket adapter pin assignments.

Figure 17.50 Memory Map in Programmer Mode

Where the sequence of programming operations that is executed includes programming with another method or of another MAT, the procedure must be repeated from the programming selection command.

The sequence for programming-selection and 128-byte programming commands is shown in figure 17.86.

Figure 17.86 Programming Sequence

(2) User Boot MAT Programming Selection

The boot program will transfer a programming program. The data is programmed to the user boot MATs by the transferred programming program.

Command

H'42

• Command, H'42, (1 byte): User boot-program programming selection

Response H'06

• Response, H'06, (1 byte): Response to user boot-program programming selection When the programming program has been transferred, the boot program will return ACK.

Error H'C2 Response

2 ERROR

- Error response: H'C2 (1 byte): Error response to user boot MAT programming selection
- ERROR: (1 byte): Error code H'54: Selection processing error (transfer error occurs and processing is not completed)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input pull-up MOS current	Ports A to E	-I _p	10	_	300	μΑ	$V_{CC} = 3.0 V$ to 3.6 V, $V_{in} = 0 V$
Input capacitance	RES	Cin	_	_	30	pF	$V_{in} = 0 V$
	NMI		_	_	30	pF	f = 1 MHz
	All input pins except RES and NMI	_	_	—	15	pF	T _a = 25°C
Current dissipation ^{*2}	Normal operation	I _{CC} *4	—	25 (3.3 V)	50	mA	f = 25 MHz
	Sleep mode	_		17 (3.3 V)	40	mA	
	Standby mode ^{*3}		_	20	90	μA	$T_a \leq 50^{\circ}C$
			_	_	120	μA	50°C < T _a
Analog power supply voltage	During A/D and D/A conversion	Al _{CC}	_	1.0 (3.0 V)	2.0	mA	
	Idle	_	_	1.0	5.0	μΑ	_
Reference power	During A/D and D/A conversion	Alcc	_	1.4 (3.0 V)	3.0	mA	
supply voltage	ply Idle age	_	_	0.2	5.0	μΑ	_
RAM standby	voltage	V _{RAM}	2.5	—	—	V	_
VCC start vol	tage ^{*5}	VCC _{START}	—		0.4	V	_
VCC rising ec	lae ^{*5}	SVCC	_	_	10	ms/V	_

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref}, and AV_{SS} pins open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

2. Current dissipation values are for $V_{IH min} = V_{CC} - 0.2 \text{ V}$ and $V_{IL max} = 0.2 \text{ V}$ with all output pins unloaded and all MOS input pull-ups in the off state.

3. The values are for $V_{\text{RAM}} \leq V_{\text{CC}} <$ 3.0 V, V_{IH} min = $V_{\text{CC}} \times$ 0.9, and V_{IL} max = 0.3 V.

- 4. I_{CC} depends on V_{CC} and f as follows: I_{CC} max = 0.5 (mA) + 0.55 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC} max = 0.4 (mA) + 0.44 (mA/(MHz × V)) × V_{CC} × f (sleep mode)
- 5. Applies on condition that the $\overline{\text{RES}}$ pin is low level at power on.

Instruction	Н	Ν	z	v	С	Definition
SUB	\uparrow	¢	¢	\$	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
SUBS	_	_	_	_	_	
SUBX	\uparrow	\$	\uparrow	\$	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
TAS	_	\uparrow	\$	0		N = Dm
						$Z = \overline{Dm} \cdot \overline{Dm} - \overline{1} \cdot \dots \cdot \overline{D0}$
TRAPA		_				
XOR		\uparrow	\uparrow	0		N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
XORC	\uparrow	\uparrow	\$	\$	¢	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.

Watchdog Timer Overflow Flag

0	[Clearing condition] Cleared by reading RSTCSR when WOVF = 1, then writing 0 to WOVF.
1	[Setting condition] When TCNT overflows (changes from H'FF to H'00) during watchdog timer operation

- Notes: The method for writing to RSTCSR is different from that for general registers to prevent accidental overwriting. For details, see section 11.2.4, Notes on Register Access.
 - * Can only be written with 0 for flag clearing.

C.6 Port B

Figure C.6 Port B Block Diagram (Pins PB0 to PB7)