

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f737-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F737 PIC16F767
- PIC16F747 PIC16F777

PIC16F737/767 devices are available only in 28-pin packages, while PIC16F747/777 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X7 family share common architecture with the following differences:

- The PIC16F737 and PIC16F767 have one-half of the total on-chip memory of the PIC16F747 and PIC16F777.
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5.
- The 28-pin devices have 16 interrupts, while the 40/44-pin devices have 17.
- The 28-pin devices have 11 A/D input channels, while the 40/44-pin devices have 14.
- The Parallel Slave Port is implemented only on the 40/44-pin devices.
- Low-Power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.

- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to **Section 15.17** "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.

The available features are summarized in Table 1-1. Block diagrams of the PIC16F737/767 and PIC16F747/777 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F737	PIC16F747	PIC16F767	PIC16F777
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	368	368	368	368
Interrupts	16	17	16	17
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM Modules	3	3	3	3
Master Serial Communications	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	11 Input Channels	14 Input Channels	11 Input Channels	14 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: PIC16F7X7 DEVICE FEATURES

Pin Name	PDIP Pin #	QFN Pin #	TQFP Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKI/RA7 OSC1	13	32	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input ST buffer when configured in RC mode; otherwise CMOS.
CLKI				Ι		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
RA7				I/O	ST	Bidirectional I/O pin.
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0	07	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	ST	Bidirectional I/O pin.
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active-low Reset to the device.
Vpp RE3				P I	ST	Programming voltage input. Digital input only pin.
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0	2	19	19	I/O	TTL	Digital I/O.
AN0 RA1/AN1	3	20	20	I	TTL	Analog input 0.
RA1 AN1	5	20	20	I/O I		Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF	4	21	21		TTL	
RA2 AN2				1/O 1		Digital I/O. Analog input 2.
VREF- CVREF				 		A/D reference voltage input (low). Comparator voltage reference output.
RA3/AN3/VREF+	5	22	22		TTL	
RA3	-			I/O		Digital I/O.
AN3				1		Analog input 3.
VREF+	6	00	00	I	OT	A/D reference voltage input (high).
RA4/T0CKI/C1OUT RA4 T0CKI	6	23	23	I/O I	ST	Digital I/O – Open-drain when configured as outpu Timer0 external clock input.
C1OUT				0		Comparator 1 output.
RA5/AN4/LVDIN/SS/C2OUT RA5	7	24	24	I/O	TTL	Digital I/O.
AN4				T		Analog input 4.
				1		Low-Voltage Detect input.
SS C2OUT						SPI slave select input. Comparator 2 output.
Legend: I = input	1	0 = ou	itout		I/O = inpu	tt/output P = power

TABLE 1-3:	PIC16F747 AND PIC16F777 PINOUT DESCRIPTION
IADLE 1-3.	PICTOF/4/ AND PICTOF/// PINOUT DESCRIPTION

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

5: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register also known as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0		
	bit 7							bit		
oit 7	RBPU : PO	RTB Pull-up E	Enable bit							
		3 pull-ups are 3 pull-ups are		individual po	rt latch valu	es				
it 6	INTEDG: Ir	nterrupt Edge	Select bit	-						
		ot on rising ed ot on falling ed	0							
oit 5		R0 Clock Sour		it						
		1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKO)								
oit 4		R0 Source Ed	-							
		ent on high-to ent on low-to-								
it 3	PSA: Pres	caler Assignm	ent bit							
		ler is assigned ler is assigned								
it 2-0	PS2:PS0:	Prescaler Rate	e Select bits	5						
	Bit Va	alue TMR0 I	Rate WDT	Rate						
	0 0 0 0	1.4	1:1							
	00		1:4							
	01									
	10 10	1.01		-						
	11		28 1:6	64						
	11	1 1:25	56 1:1	28						
	Legend:									
	R = Reada	able bit	W = Wr	ritable bit	U = Unimp	olemented	bit, read as	'0'		
	-n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	0' = Bit is cleared x = Bit is unknown			

4.6.3 CLOCK TRANSITION AND WDT

When clock switching is performed, the Watchdog Timer is disabled because the Watchdog Ripple Counter is used as the Oscillator Start-up Timer (OST).

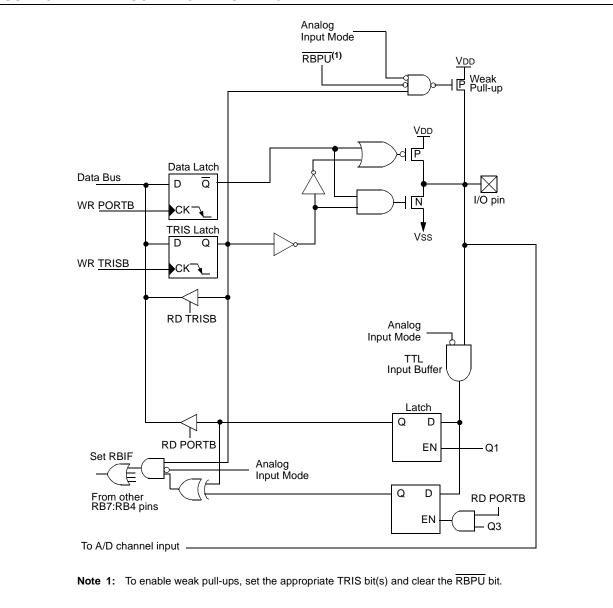
Note: The OST is only used when switching to XT, HS and LP Oscillator modes.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog Counter is re-enabled with the Counter Reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	IOFS	SCS1	SCS0
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6-4 IRCF<2:0>: Internal RC Oscillator Frequency Select bits
 - 000 = 31.25 kHz
 - 001 = 125 kHz 010 = 250 kHz
 - O11 = 500 kHz
 - 100 = 1 MHz
 - 101 = 2 MHz
 - 110 = 4 MHz
 - 111 = 8 MHz


bit 3 **OSTS:** Oscillator Start-up Time-out Status bit⁽¹⁾

1 = Device is running from the primary system clock

- 0 = Device is running from the Timer1 oscillator (T1OSC) or INTRC as a secondary system clock
 - Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the oscillator mode.
- bit 2 IOFS: INTOSC Frequency Stable bit
 - 1 = Frequency is stable
 - 0 = Frequency is not stable
- bit 1-0 SCS<1:0>: Oscillator Mode Select bits
 - 00 = Oscillator mode defined by FOSC<2:0>
 - 01 = T1OSC is used for system clock
 - 10 = Internal RC is used for system clock
 - 11 = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 7-1:	T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)								
	U-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	
	bit 7							bit 0	
bit 7	-	nented: Rea							
bit 6		•	m Clock Sta		4				
	•			Fimer1 oscilla another sourc					
bit 5-4	-			k Prescale Se					
	-	Prescale valu							
		Prescale valu							
		Prescale valu Prescale valu							
bit 3	T1OSCEN	I: Timer1 Os	scillator Enal	ble Control bi	t				
	1 = Oscilla	ator is enabl	ed						
	0 = Oscilla	ator is shut-o	off (the oscill	ator inverter i	s turned off to	o eliminate	power drain)	
bit 2			ernal Clock I	nput Synchro	nization Cont	rol bit			
	TMR1CS			I. S					
		•	e external cl nal clock inp						
	TMR1CS								
	This bit is	ignored. Tin	ner1 uses the	e internal clo	ck when TMR	1CS = 0.			
bit 1	TMR1CS:	Timer1 Clo	ck Source S	elect bit					
	 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4) 								
bit 0	TMR1ON:	Timer1 On	bit						
	1 = Enables Timer1 0 = Stops Timer1								
	Logond								
	Legend: R = Read	labla bit	\\/ _	Writable bit	11 - 1 Inim	plomontod	hit road oo	·0'	
	R = Read		vv =	winable bil	0 = 0	piemented	bit, read as	0	

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 7.6** "**Timer1 Oscillator**") gives users the option to include RTC functionality in their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

RTCinit	BANKSEL MOVLW MOVWF CLRF MOVLW MOVWF CLRF CLRF MOVLW MOVWF	TMR1H 0x80 TMR1H TMR1L b'00001111' T1CON secs mins .12 hours	; Preload TMR1 register pair ; for 1 second overflow ; Configure for external clock, ; Asynchronous operation, external oscillator ; Initialize timekeeping registers
	BANKSEL BSF	PIE1 PIE1, TMR1IE	; Enable Timer1 interrupt
RTCisr	RETURN BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF	mins, f	; Increment minutes
	MOVF	mins, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

EXAMPLE 7-3: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

9.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

The CCP1, CCP2 and CCP3 modules are identical in operation, with the exception being the operation of the special event trigger. Table 9-1 and Table 9-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 and CCP3 operate the same as CCP1, except where noted.

9.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will clear both TMR1H and TMR1L registers.

9.2 CCP2 Module

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match; it will clear both TMR1H and TMR1L registers and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) and in Application Note *AN594 "Using the CCP Module*(s)" (DS00594).

9.3 CCP3 Module

Capture/Compare/PWM Register 3 (CCPR3) is comprised of two 8-bit registers: CCPR3L (low byte) and CCPR3H (high byte). The CCP3CON register controls the operation of CCP3.

TABLE 9-1: CCP MODE – TIMER RESOURCES REQUIRED

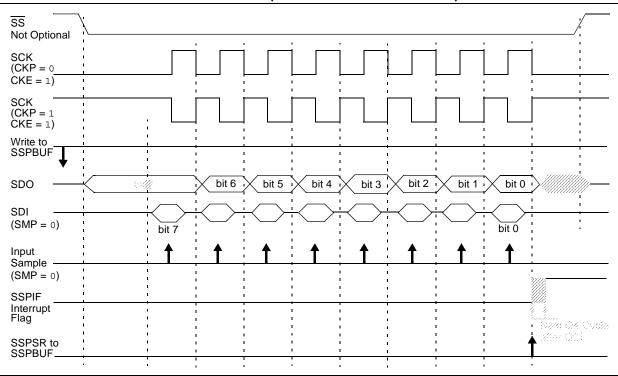

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 9-2:INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time base.
Capture	Compare	Same TMR1 time base.
Compare	Compare	Same TMR1 time base.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges are aligned.
PWM	Capture	None.
PWM	Compare	None.

FIGURE 10-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode with cke = 0) Image: Spin mode waveform (slave mode waveform (slaveform (slaveform

FIGURE 10-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

10.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address, is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter #106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter #107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit, during the ninth bit time, if an address match occurred or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 10-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, The BF flag Is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

10.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

10.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

10.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

10.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/ low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

10.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

10.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

10.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

11.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is one of the two serial I/O modules. (AUSART is also known as a Serial Communications Interface or SCI.) The AUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The AUSART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The AUSART module also has a multi-processor communication capability using 9-bit address detection.

REGISTER 11-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	, R-1	R/W-0									
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D									
	bit 7							bit 0									
bit 7	CSRC: Clock Asynchronou		elect bit														
	Don't care.																
	Synchronous mode: 1 = Master mode (clock generated internally from BRG)																
	0 = Slave mo																
bit 6	TX9 : 9-bit Tr	ansmit Enal	ole bit														
	1 = Selects 0 = Selects																
bit 5	TXEN: Trans	mit Enable	bit														
	1 = Transmit 0 = Transmit																
	Note: S	BREN/CREM	V overrides	TXEN in Syı	nc mode.												
bit 4	SYNC: AUS	ART Mode S	Select bit														
	1 = Synchron 0 = Asynchron)														
bit 3	Unimpleme	nted: Read	as '0'														
bit 2	BRGH: High	Baud Rate	Select bit														
	Asynchronou																
	1 = High spe 0 = Low spe																
	Synchronous																
	Unused in th																
bit 1	TRMT: Trans		egister Statu	s bit													
	1 = TSR emp 0 = TSR full	oty															
bit 0	TX9D: 9th bi	t of Transm	it Data, can	be Parity bit													
	Legend:]									
	R = Readabl	e hit	M = M r	itable bit	U = Unimple	amented h	it read as 'C	,									
	-n = Value at				•		x = Bit is un										
			-					-n = Value at POR $(1' = Bit is set)$ $(0' = Bit is cleared)$ x = Bit is unknown									

CP C	CCPMX DEBUG BORV1 BORV0 BOREN MCLRE FOSC2 PWRTEN WDTEN FOSC	1 FOSCO						
bit 13		bit 0						
L:140	OD Flack December Measure Octob Dectedies bits							
bit 13	CP: Flash Program Memory Code Protection bits							
	 1 = Code protection off 0 = 0000h to 1FFFh code-protected for PIC16F767/777 and 0000h to 0FFFh for PIC16F737/747 (all 	protected						
bit 12	CCPMX: CCP2 Multiplex bit							
	1 = CCP2 is on RC1							
	0 = CCP2 is on RB3							
bit 11	DEBUG: In-Circuit Debugger Mode bit							
	 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger 							
bit 10-9	9 Unimplemented: Read as '1'							
bit 8-7	BORV<1:0>: Brown-out Reset Voltage bits							
	11 = VBOR set to 2.0V							
	10 = VBOR set to 2.7V 01 = VBOR set to 4.2V							
	01 = VBOR set to 4.2V $00 = VBOR set to 4.5V$							
bit 6	BOREN: Brown-out Reset Enable bit							
	BOREN combines with BORSEN to control when BOR is enabled and how it is controlled.							
	BOREN:BORSEN:							
	11 = BOR enabled and always on							
	 10 = BOR enabled during operation and disabled during Sleep by hardware 01 = BOR controlled by software bit SBOREN – refer to Register 2-8 (PCON<2>) 							
	00 = BOR disabled							
bit 5	MCLRE: MCLR/VPP/RE3 Pin Function Select bit							
	1 = MCLR/VPP/RE3 pin function is MCLR							
	0 = MCLR/VPP/RE3 pin function is digital input only, MCLR gated to '1'							
bit 3	PWRTEN: Power-up Timer Enable bit							
	1 = PWRT disabled 0 = PWRT enabled							
bit 2	WDTEN: Watchdog Timer Enable bit							
	1 = WDT enabled							
	0 = WDT disabled							
bit 4, 1-0	-0 FOSC2:FOSC0: Oscillator Selection bits							
	111 = EXTRC oscillator; CLKO function on OSC2/CLKO/RA6							
	110 = EXTRC oscillator; port I/O function on OSC2/CLKO/RA6 101 = INTRC oscillator; CLKO function on OSC2/CLKO/RA6 and port I/O function on OSC1/CLKI/RA7							
	101 = INTRC oscillator; port I/O function on OSC1/CLKI/RA7 and OSC2/CLKO/RA6							
	011 = EXTCLK; port I/O function on OSC2/CLKO/RA6							
	010 = HS oscillator 001 = XT oscillator							
	000 = LP oscillator							
	Legend:							
	сусни.							

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

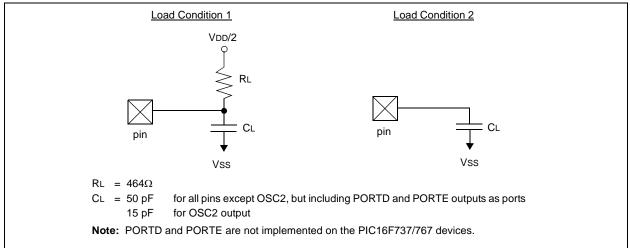
15.9 Control Register

The Low-Voltage Detect Control register controls the operation of the Low-Voltage Detect circuitry.

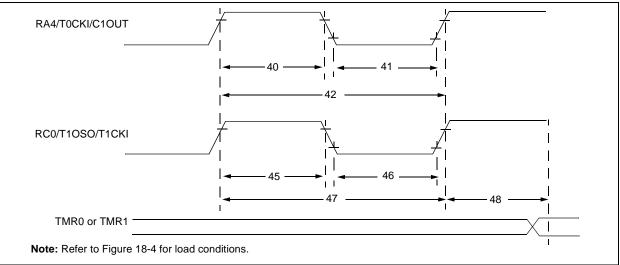
REGISTER 15-3: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER (ADDRESS 109h)

						•		,	
	U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	
	—	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	
	bit 7							bit 0	
bit 7-6	Unimpleme	ented: Read	as '0'						
bit 5	IRVST: Inte	rnal Referer	nce Voltage	Stable Flag b	oit				
	voltage	e range	C C	Detect logic	U U			·	
	specifie	ed voltage ra	ange and the	e LVD interru	pt should no	t be enable	d	U U	
bit 4	LVDEN: Lo	w-Voltage D	etect Power	Enable bit					
		s LVD, powe s LVD, powe							
bit 3-0	LVDL3:LVDL0: Voltage Detection Limit bits								
	<pre>1111 = External analog input is used (input comes from the LVDIN pin) 1110 = Maximum setting</pre>								
	•								
	•								
	• 0001 = Minimum setting								
	Mater	0	0.0						

Note: See Table 18-3 in Section 18.0 "Electrical Characteristics" for the specifications.


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.5 Timing Parameter Symbology


The timing parameter symbols have been created using one of the following formats:

1. TppS2p	pS	3. Tcc:s⊤	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	т	Time
Lowerca	se letters (pp) and their meanings:	·	
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	se letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (¹² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 18-4: LOAD CONDITIONS

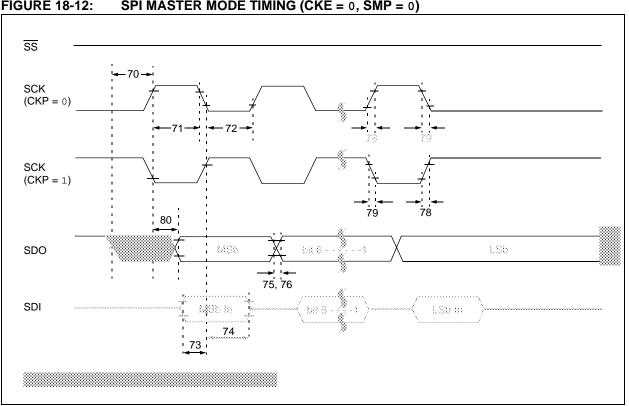
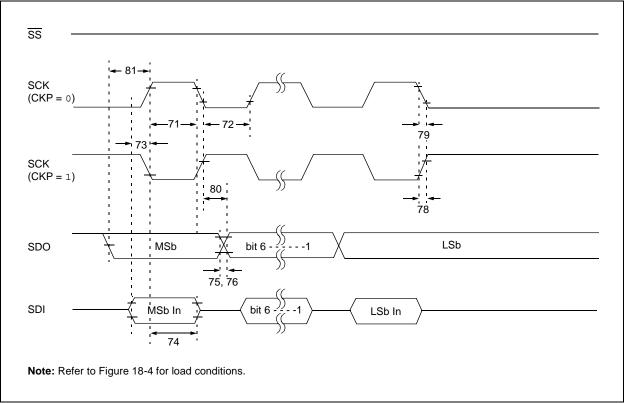


FIGURE 18-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


Param No.	Symbol	Characteristic			Min	Тур†	Max	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width		No prescaler	0.5 TCY + 20			ns	Must also meet
				With prescaler	10	_		ns	parameter 42
41*	T⊤0L	T0CKI Low Pulse	Width	No prescaler	0.5 TCY + 20	_		ns	Must also meet
				With prescaler	10	—	—	ns	parameter 42
42*	TT0P	T0CKI Period		No prescaler	Tcy + 40	_	_	ns	
				With prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16F7X7	15	_	_	ns	parameter 47
			Prescaler = 2, 4, 8	PIC16LF7X7	25	—	—	ns	
			Asynchronous	PIC16F7X7	30	—	—	ns	
				PIC16LF7X7	50	—	—	ns	
46*	T⊤1L	L T1CKI Low Time	Synchronous, Prescaler = 1		0.5 Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16F7X7	15	—	—	ns	parameter 47
			Prescaler = 2, 4, 8	PIC16LF7X7	25	_	_	ns	
			Asynchronous	PIC16F7X7	30	-	_	ns	
				PIC16LF7X7	50	—	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous	PIC16F7X7	Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
				PIC16LF7X7	Greater of: 50 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16F7X7	60	_		ns	
				PIC16LF7X7	100	—	—	ns	1
	F⊤1		nput Frequency Ra by setting bit T1O		DC	_	200	kHz	
48	TCKEZTMR1	Delay from Extern	al Clock Edge to Ti	mer Increment	2 Tosc	_	7 Tosc	—	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-12: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

TABLE 18-15: A/D CONVERTER CHARACTERISTICS: PIC16F7X7 (INDUSTRIAL, EXTENDED) PIC16LF7X7 (INDUSTRIAL)

_	İ	İ						
Param No.	Sym	Charact	eristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		—	—	10 bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral Linearity	Error	_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential Linear	rity Error	_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset Error		-	—	<±2	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A07	Egn	Gain Error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	_	Monotonicity		—	guaranteed ⁽³⁾	—		$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage (VREF+ – VREF-)		2.0	—	VDD + 0.3	V	
A21	Vref+	Reference Voltage High		AVDD – 2.5V	—	AVDD + 0.3V	V	
A22	Vref-	Reference Voltag	e Low	AVss-0.3V	—	VREF+ - 2.0V	V	
A25	VAIN	Analog Input Volt	age	Vss - 0.3V	—	VREF + 0.3V	V	
A30	Zain	Recommended Impedance of Analog Voltage Source		—	—	2.5	kΩ	(Note 4)
A40	IAD	A/D Conversion	PIC16F7X7	—	220	—	μΑ	Average current
		Current (VDD)	PIC16LF7X7	—	90	—	μA	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Current (Note 2)		_	_	5	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1 "A/D Acquisition Requirements".
				—	—	150	μA	During A/D conversion cycle

* These parameters are characterized but not tested.

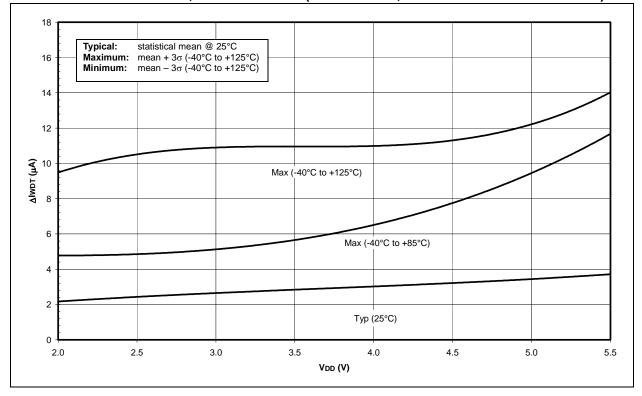
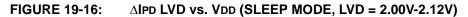
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

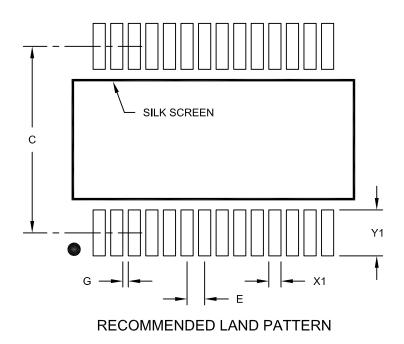
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current specification includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.



FIGURE 19-15: △IPD WDT, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

W

Wake-up from Sleep	
Interrupts	
WDT Reset	
Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
WDT Reset, Normal Operation	172, 179, 180
WDT Reset, Sleep	172, 179, 180
WCOL	121, 122, 123, 126
WCOL Status Flag	121, 122, 123, 126
WWW Address	
WWW, On-Line Support	4