

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f737t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	15
3.0	Reading Program Memory	31
4.0	Oscillator Configurations	33
5.0	I/O Ports	49
6.0	Timer0 Module	73
7.0	Timer1 Module	77
8.0	Timer2 Module	85
9.0	Capture/Compare/PWM Modules	87
10.0	Master Synchronous Serial Port (MSSP) Module	93
11.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	133
12.0	Analog-to-Digital Converter (A/D) Module	151
13.0	Comparator Module	161
14.0	Comparator Voltage Reference Module	167
15.0	Special Features of the CPU	169
16.0	Instruction Set Summary	193
17.0	Development Support	201
18.0	Electrical Characteristics	205
19.0	DC and AC Characteristics Graphs and Tables	235
20.0	Packaging Information	249
Appe	ndix A: Revision History	265
Appe	ndix B: Device Differences	265
Appe	ndix C: Conversion Considerations	266
The N	Aicrochip Web Site	275
Custo	omer Change Notification Service	275
Custo	omer Support	275
Read	er Response	276
PIC1	6F7X7 Product Identification System	277

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

REGISTER 5-1:	TRISE RE	GISTER (A	DDRESS 8	9h)									
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1					
	IBF	OBF	IBOV	PSPMODE	_(1)	TRISE2	TRISE1	TRISE0					
	bit 7							bit 0					
bit 7	Parallel Slave Port Status/Control bits:												
	IBF: Input Buffer Full Status bit												
	 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received 												
bit 6	OBF: Outp	ut Buffer Full	Status bit										
	 1 = The output buffer still holds a previously written word 0 = The output buffer has been read 												
bit 5	IBOV: Inpu	t Buffer Over	flow Detect	oit (in Micropro	cessor mod	le)							
	1 = A write softwa 0 = No ove	e occurred wh re) erflow occurre	ien a previoi ed	usly input word	has not be	en read (m	ust be clea	cleared in					
bit 4	PSPMODE: Parallel Slave Port Mode Select bit												
	1 = Parallel	I Slave Port r	node										
	0 = Genera	I Purpose I/C) mode										
bit 3	Unimplem	ented: Read	as '1' ⁽¹⁾										
	Note 1:	RE3 is an inp	out only. The	state of the TR	ISE3 bit has	no effect ar	nd will alway	/s read '1'.					
bit 2	PORTE Da	ta Direction	bits:										
	TRISE2: Di	irection Conti	rol bit for pin	RE2/CS/AN7									
	1 = Input												
bit 1	0 = Output												
DILI													
	0 = Output												
bit 0	TRISE0 : Direction Control bit for pin RE0/RD/AN5												
	1 = Input												
	0 = Output												
	Legend]					
	R = Reada	ble bit	W = W	ritable bit	U = Unimpl	emented hi	t. read as 'i	o,					

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

		R/W-1	R/W-1	R/W-1	、 R/W-1	R/W-1	, R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	T0SE	PSA ⁽¹⁾	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled											
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin											
bit 5	TOCS : TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)											
bit 4	TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin											
bit 3	 PSA: Prescaler Assignment bit⁽¹⁾ 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module Note 1: To avoid an unintended device Reset, the instruction sequence shown in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must 											
bit 2-0	PS<2:0>: Bit Value 000 001 010 011 100 101 110 111	Prescaler Ra <u>TMR0 Rate</u> 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	te Select bits WDT Rate 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	5								
	Legend: R = Reada -n = Value	able bit at POR	W = Wr '1' = Bit	ritable bit is set	U = Unimpl '0' = Bit is c	emented b leared	it, read as ' x = Bit is u	0' nknown				

REGISTER 6-1: OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 181h)

9.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

The CCP1, CCP2 and CCP3 modules are identical in operation, with the exception being the operation of the special event trigger. Table 9-1 and Table 9-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 and CCP3 operate the same as CCP1, except where noted.

9.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will clear both TMR1H and TMR1L registers.

9.2 CCP2 Module

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match; it will clear both TMR1H and TMR1L registers and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) and in Application Note *AN594 "Using the CCP Module*(s)" (DS00594).

9.3 CCP3 Module

Capture/Compare/PWM Register 3 (CCPR3) is comprised of two 8-bit registers: CCPR3L (low byte) and CCPR3H (high byte). The CCP3CON register controls the operation of CCP3.

TABLE 9-1: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

TABLE 9-2:INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time base.
Capture	Compare	Same TMR1 time base.
Compare	Compare	Same TMR1 time base.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges are aligned.
PWM	Capture	None.
PWM	Compare	None.

REGISTER 9-1:	CCPxCON	: CCPx C	ONTROL F	REGISTER	(ADDRES	S 17h, 1D	h, 97h)						
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0					
	bit 7							bit 0					
bit 7-6	Unimplem	ented: Rea	d as '0'										
bit 5-4	CCPxX:CC	CCPxX:CCPxY : PWM Least Significant bits <u>Capture mode:</u> Unused.											
	<u>Capture mo</u> Unused.												
	<u>Compare mode:</u> Unused.												
	<u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.												
bit 3-0	CCPxM3:C	CPxM0: CO	Px Mode S	elect bits									
	0000 = Ca p	oture/Comp	are/PWM di	sabled (rese	ts CCPx mo	dule)							
	0100 = Ca p	oture mode,	every falling	g edge									
	0101 = Ca p	oture mode,	every rising	, edge									
	0110 = Cap	oture mode,	every 4th ri	sing edge									
	1000 - Cor	nnare mode	every rour	on match ((CPvIE bit is	s set)							
	1000 = Cor	npare mode	, set output	ut on match	(CCPxIF bit	is set)							
	1010 = Cor una	npare mode	e, generate s	software inte	errupt on ma	tch (CCPxIF	⁻ bit is set, C	CPx pin is					
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected) CCP1 clears Timer1; CCP2 clears Timer1 and starts an A/D conversion (if A/D m is enabled)												
	11xx = PW	M mode											
	Legend:												
	R = Reada	ble bit	W = V	Vritable bit	U = Unii	mplemented	l bit, read as	·'O'					

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

10.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 10-1: SSPSTAT: MSSP STATUS (SPI MODE) REGISTER (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	<u>r mode:</u>						
	1 = Input d	ata sampled	at end of da	ata output ti f data outpu	me It time			
	0 = Input u SPI Slave	ala sampieu mode:	at midule o	i uala oulpu				
	SMP must	be cleared v	vhen SPI is	used in Slav	ve mode.			
bit 6	CKE: SPI	Clock Edge	Select bit					
	1 = Transn 0 = Transn	nit occurs on nit occurs on	transition fr transition fr	om active to	o Idle clock s active clock s	state state		
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).	
bit 5	D/A: Data/	Address bit						
	Used in I ² 0	C mode only.						
bit 4	P: Stop bit							
	Used in I ² C	; mode only.	This bit is cle	ared when t	he MSSP m	odule is disa	bled, SSPEN	l is cleared.
bit 3	S: Start bit							
	Used in I ² C	C mode only.						
bit 2	R/W: Read	I/Write bit Inf	ormation					
	Used in I ² 0	C mode only.						
bit 1	UA: Updat	e Address bi	it					
	Used in I ² 0	C mode only.						
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)				
	1 = Receiv 0 = Receiv	e complete, e not comple	SSPBUF is ete, SSPBU	full F is empty				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	ʻ0'
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

10.4.4 CLOCK STRETCHING

Both 7-bit and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

10.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock, at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 10-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

10.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address, with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

10.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 10-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

10.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the highorder bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 10-11).

10.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set and while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 10-15).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCO N	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART	Transmit	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Registe	er					0000 0000	0000 0000

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

© 2003-2013 Microchip Technology Inc.

12.7 A/D Operation During Sleep

The A/D module can operate during Sleep mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRESH register. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in Sleep, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in Sleep, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

12.8 Effects of a Reset

A device Reset forces all registers to their Reset state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRESH register will contain unknown data after a Power-on Reset.

12.9 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH to the desired location). The appropriate analog input channel must be selected and an appropriate acquisition time should pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on:	Value on all other
Address	Nume	Bitt	Bitto	Bit 0	DR 4	BRO	BRE	BRT	Bitt	POR, BOR	Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	CMIF	LVDIF	—	BCLIF	-	CCP3IF	CCP2IF	000- 0-00	000- 0-00
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	CMIE	LVDIE	—	BCLIE	-	CCP3IE	CCP2IE	000- 0-00	000- 0-00
1Eh	ADRESH	A/D Resu	ult Registe	er High By	/te					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON	0000 0000	0000 0000
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 000	0000 0000
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	uu0u 0000
85h	TRISA	PORTA D	ata Direct	tion Regis	ster					1111 1111	1111 1111
09h	PORTE ⁽²⁾	—			_	RE3 ⁽³⁾	RE2	RE1	RE0	x000	x000
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	(3)	PORTE Da	ta Directio	n bits	0000 1111	0000 1111

TABLE 12-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767 devices; always maintain these bits clear.

2: These registers are reserved on the PIC16F737/767 devices.

3: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets	
9Dh	CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000	
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111	

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

TABLE 16-2: PIC	16F7X7 INS	STRUCTION	SET
-----------------	------------	-----------	-----

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notos
		Description		MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1	When an	I/O register is modified as a function of itself (e.g.	MOVE D	ORTB	1) the	value i	ised wil	l he that val	

present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

17.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

17.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

17.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

17.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

17.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

18.1 DC Characteristics: PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial)

PIC16LF737/747/767/777 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial						
PIC16F737/747/767/777 (Industrial, Extended)			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC16LF7X7	2.5 2.2 2.0		5.5 5.5 5.5	V V V	A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C A/D not used, -40°C to +85°C		
D001 D001A		PIC16F7X7	4.0 VBOR*	_	5.5 5.5	V V	All configurations BOR enabled (Note 6)		
D002*	Vdr	RAM Data Retention Voltage (Note 1)	—	1.5	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details		
	VBOR	Brown-out Reset Voltage							
		PIC16LF7X7							
D005		BORV1:BORV0 = 11	1.96	2.06	2.16	V	$85^{\circ}C \ge T \ge 25^{\circ}C$		
		BORV1:BORV0 = 10	2.64	2.78	2.92	V			
		BORV1:BORV0 = 01	4.11	4.33	4.55	V			
		BORV1:BORV0 = 00	4.41	4.64	4.87	V			
D005		PIC16F7X7	Industria		1				
		BORV1:BORV0 = 1x	N.A.		N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45		4.83	V			
D005		PIC16F7X7	Extende	d					
		BORV1:BORV0 = 1x	N.A.		N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.07		4.59	V			
		BORV1:BORV0 = 00	4.36	—	4.92	V			

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.

4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20		
Contact Width	b	0.23	0.30	0.35		
Contact Length	L	0.50	0.55	0.70		
Contact-to-Exposed Pad	K	0.20	_	_		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

Note:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A