

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f737t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

PIC16F7X7

3.0 READING PROGRAM MEMORY

The Flash program memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

bit bit bit

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices can have up to 8K words of program Flash, with an address range from 0h to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as '0's.

3.1 PMADR

The address registers can address up to a maximum of 8K words of program Flash.

When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADR register. The upper Most Significant bits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit, RD, initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0			
	reserved	_	—	—	—	_	—	RD			
	bit 7							bit 0			
7	Reserved:	Read as '1'									
6-1	Unimplem	ented: Read	as '0'								
0	RD: Read (Control bit									
	 1 = Initiates a Flash read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software 										
	0 = Flash r	ead comple	ted								
	Legend:										
	R = Reada	ble bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'			
	-n = Value	at POR	'1' = B	lit is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			

4.7.3 SEC_RUN/RC_RUN TO PRIMARY CLOCK SOURCE

When switching from a SEC_RUN or RC_RUN mode back to the primary system clock, following a change of SCS<1:0> to '00', the sequence of events that take place will depend upon the value of the FOSC bits in the Configuration register. If the primary clock source is configured as a crystal (HS, XT or LP), then the transition will take place after 1024 clock cycles. This is necessary because the crystal oscillator has been powered down until the time of the transition. In order to provide the system with a reliable clock when the changeover has occurred, the clock will not be released to the changeover circuit until the 1024 counts have expired.

During the oscillator start-up time, the system clock comes from the current system clock. Instruction execution and/or peripheral operation continues using the currently selected oscillator as the CPU clock source, until the necessary clock count has expired, to ensure that the primary system clock is stable.

To know when the OST has expired, the OSTS bit should be monitored. OSTS = 1 indicates that the Oscillator Start-up Timer has timed out and the system clock comes from the primary clock source.

Following the oscillator start-up time, the internal Q clocks are held in the Q1 state until eight falling edge clocks are counted from the primary system clock. The clock input to the Q clocks is then released and operation resumes with the primary system clock determined by the FOSC bits (see Figure 4-10).

When in SEC_RUN mode, the act of clearing the T1OSCEN bit in the T1CON register will cause SCS<0> to be cleared, which causes the SCS<1:0> bits to revert to '00' or '10' depending on what SCS<1> is. Although the T1OSCEN bit was cleared, T1OSC will be enabled and instruction execution will continue until the OST time-out for the main system clock is complete. At that time, the system clock will switch from the T1OSC to the primary clock or the INTRC. Following this, the Timer1 oscillator will be shut-down.

Note: If the primary system clock is either RC or EC, an internal delay timer (5-10 μs) will suspend operation after exiting Secondary Clock mode to allow the CPU to become ready for code execution.

4.7.3.1 Returning to Primary Clock Source Sequence

Changing back to the primary oscillator from SEC_RUN or RC_RUN can be accomplished by either changing SCS<1:0> to '00' or clearing the T1OSCEN bit in the T1CON register (if T1OSC was the secondary clock).

The sequence of events that follows is the same for both modes:

- If the primary system clock is configured as EC, RC or INTRC, then the OST time-out is skipped. Skip to step 3.
- If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active, waiting for 1024 clocks of the primary system clock.
- 3. On the following Q1, the device holds the system clock in Q1.
- 4. The device stays in Q1 while eight falling edges of the primary system clock are counted.
- 5. Once the eight counts transpire, the device begins to run from the primary oscillator.
- 6. If the secondary clock was INTRC and the primary clock is not INTRC, the INTRC will be shut-down to save current, providing that the INTRC is not being used for any other function, such as WDT or Fail-Safe Clock Monitoring.
- 7. If the secondary clock was T1OSC, the T1OSC will continue to run if T1OSCEN is still set; otherwise, the Timer1 oscillator will be shut-down.

PIC16F7X7

FIGURE 5-5: BLOCK DIAGRAM OF RA5/AN4/LVDIN/SS/C2OUT PIN

5.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings and to **Section 16.1 "Read-Modify-Write Operations"** for additional information on read-modify-write operations.

FIGURE 5-16: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<2:0>, RC<7:5> PINS

 Peripheral OE (Output Enable) is only activated if Peripheral Select is active.

FIGURE 5-17:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<4:3> PINS

5.4 **PORTD and TRISD Registers**

This section is not applicable to the PIC16F737 or PIC16F767.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-18: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 0.
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 1.
RD2/PSP2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 2.
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 3.
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 4.
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 5.
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 6.
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 7.

TABLE 5-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

	TABLE 5-8:	SUMMARY (OF REGISTERS	ASSOCIATED	WITH PORTD
--	------------	-----------	--------------	------------	------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0		Value on: POR, BOR	Value on all other Resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	xxxx xxxx	uuuu uuuu		
88h	TRISD	PORT	D Data D	Direction		1111 1111	1111 1111			
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_(1)	0000 1111	0000 1111		

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

The Timer1 oscillator can be used as a secondary clock source in low-power modes. When the T1RUN bit is set along with SCS<1:0> = 01, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a Timer
- as a Synchronous Counter
- as an Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.4** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC0/T1OSO/T1CKI and RC1/T1OSI/CCP2 pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

10.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

10.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

10.3.10 BUS MODE COMPATIBILITY

Table 10-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 10-1: SPI BUS MODES

Standard SPI Mode	Control Bits State					
Terminology	СКР	CKE				
0, 0	0	1				
0, 1	0	0				
1, 0	1	1				
1, 1	1	0				

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISC	PORTC Da		1111 1111	1111 1111						
SSPBUF	Synchrono		xxxx xxxx	uuuu uuuu						
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	PORTA Da		1111 1111	1111 1111						
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 10-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.
 Note 1: The PSPIF and PSPIE bits are reserved on 28-pin devices; always maintain these bits clear.

PIC16F7X7

11.1 AUSART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the AUSART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 11-1 shows the formula for computation of the baud rate for different AUSART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

11.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 11-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X + 1))	Baud Rate = Fosc/(16(X + 1))
1	(Synchronous) Baud Rate = Fosc/(4(X + 1))	N/A

Legend: X = value in SPBRG (0 to 255).

TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	0000 -010	0000 -010						
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 0000x
99h	SPBRG	Baud Rat	te Genera	0000 0000	0000 0000						

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

11.2.2 AUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 11-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit, CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit, OERR, has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing Error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values; therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

17.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

17.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

17.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial)

PIC16LF (Indus	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F7: (Indus	37/747/767/777 strial, Extended)	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Тур	Max	Units		Condi	tions				
	Power-Down Current (IPD)	(1)									
	PIC16LF7X7	0.1	0.4	μΑ	-40°C						
		0.1	0.4	μΑ	+25°C	VDD = 2.0V					
		0.4	1.5	μΑ	+85°C						
	PIC16LF7X7	0.3	0.5	μΑ	-40°C						
		0.3	0.5	μΑ	+25°C	VDD = 3.0V					
		0.7	1.7	μA	+85°C						
	All devices	0.6	1.0	μA	-40°C						
		0.6	1.0	μΑ	+25°C	Vpp = 5.0V					
		1.2	5.0	μΑ	+85°C	VDD = 0.0V					
	Extended devices	6	28	μΑ	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indu	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F7: (Indu	37/747/767/777 strial, Extended)	Standa Operati	rd Oper ng temp	erating Co	onditions (unless -40°C ≤ TA -40°C ≤ TA	s otherwise stated ≤ +85°C for indust ≤ +125°C for exter	l) rial nded				
Param No.	Device	Тур	Max	Units		Conditions					
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	8	20	μΑ	-40°C						
		7	15	μA	+25°C	VDD = 2.0V					
		7	15	μA	+85°C						
	PIC16LF7X7	16	30	μΑ	-40°C						
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 31.25 kHz				
		14	25	μA	+85°C		Internal RC Oscillator)				
	All devices	32	40	μΑ	-40°C		,				
		29	35	μΑ	+25°C						
		29	35	μA	+85°C	VDD = 3.0V					
	Extended devices	35	45	μΑ	+125°C						
	PIC16LF7X7	132	160	μΑ	-40°C						
		126	155	μΑ	+25°C	VDD = 2.0V					
		126	155	μΑ	+85°C						
	PIC16LF7X7	260	310	μΑ	-40°C						
		230	300	μΑ	+25°C	VDD = 3.0V	FOSC = 1 MHz				
		230	300	μΑ	+85°C		Internal RC Oscillator)				
	All devices	560	690	μΑ	-40°C						
		500	650	μΑ	+25°C						
		500	650	μΑ	+85°C	VDD = 3.0V					
	Extended devices	570	710	μΑ	+125°C						
	PIC16LF7X7	310	420	μA	-40°C	-					
		300	410	μΑ	+25°C	VDD = 2.0V					
		300	410	μΑ	+85°C						
	PIC16LF7X7	550	650	μΑ	-40°C						
		530	620	μΑ	+25°C	VDD = 3.0V	FOSC = 4 MHz				
		530	620	μΑ	+85°C		Internal RC Oscillator)				
	All devices	1.2	1.5	mA	-40°C						
		1.1	1.4	mA	+25°C	Vpp = 5 0V					
		1.1	1.4	mA	+85°C	VDD = 0.0V					
	Extended devices	1.3	1.6	mA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 18-14: SPI SLAVE MODE TIMING (CKE = 0)

SPI SLAVE MODE TIMING (CKE = 1) FIGURE 18-15:

TABLE 18-13: AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
120	TCKH2DTV	SYNC XMIT (MASTER & SLAVE)						
		Clock High to Data Out Valid	PIC16F7X7	—	—	80	ns	
			PIC16LF7X7		-	100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	PIC16F7X7	—	—	45	ns	
		(Master mode)	PIC16LF7X7	—	—	50	ns	
122	TDTRF	Data Out Rise Time and Fall Time	PIC16F7X7	—	—	45	ns	
			PIC16LF7X7		—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-19: AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-14: AUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before $CK \downarrow$ (DT setup time)	15	_	_	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-9: IDD vs. VDD, SEC_RUN MODE, -10°C TO +125°C, 32.768 kHz (XTAL 2 x 22 pF, ALL PERIPHERALS DISABLED)

FIGURE 19-10: IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)

Example

20.0 PACKAGING INFORMATION

20.1 Package Marking Information

28-Lead SPDIP (.300")

MSSP (I ² C Mode) 102	>
MSSP (SPI Mode) 93	3
On-Chip Reset Circuit 172	5
OSC1/CL KI/RA7 Pin 54	1
OSC2/CLKO/RA6 Pin 53	'
PIC16E737 and PIC16E767 6	ŝ
PIC16F747 and PIC16F777 7	7
PORTC (Perinberal Output Override)	
RC < 2.0 > $RC < 7.5$ > Pins 65	5
PORTC (Peripheral Output Override)	,
RC<4:3> Pins 65	5
PORTD (In I/O Port Mode) 67	7
PORTD and PORTE (Parallel Slave Port) 70	ר
PORTE (In I/O Port Mode) 68	Ŕ
PWM Mode 91	1
RA0/AN0:RA1/AN1 Pins 50	้
$R \Delta 2/\Delta N 2/1/PEE - /C VPEE Pin$ 51	í
$R \Delta 3/\Delta N 3/V PEE + Pin$ 50	้
RA4/T0CKI/C1OLIT Pin 51	í
RA5/AN4/LVDIN/SS/C2OLIT Pin 52	2
RB0/INT/AN12 Pin 57	7
RB1/AN10 Pin 57	7
RB2/AN8 Pin 58	R
RB3/CCP2/AN9 Pin 59	à
RB4/AN11 Pin 60	Ś
RB5/AN13/CCP3 Pin 61	í
RB6/PGC Pin 62	>
RB7/PGD Pin	3
Recommended MCLR Circuit 173	ŝ
System Clock 39	à
Timer0/WDT Prescaler	ŝ
Timer1	9
Timer2 85	5
Watchdog Timer (WDT)	5
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit	5
Brown-out Reset (BOR) 169, 172, 173, 179, 180)
, , , , , , , , , , , , , , , , , , , ,	

С

C Compilers
MPLAB C18202
Capture/Compare/PWM (CCP)87
Capture Mode89
CCP Pin Configuration89
Prescaler
Compare Mode 89
CCP Pin Configuration90
Software Interrupt Mode90
Special Event Trigger90
Special Event Trigger Output
Timer1 Mode Selection90
Interaction of Two CCP Modules87
PWM Mode91
Duty Cycle91
Example Frequencies and Resolutions
Period91
Setup for Operation92
Registers Associated with Capture, Compare and
Timer190
Registers Associated with PWM and Timer292
Timer Resources87
CCP1 Module87
CCP2 Module
CCP3 Module
CCPR1H Register

CCPR1L Register	87
CCPR2H Register	87
CCPR2L Register	
CCPR3H Register	87
CCPR3L Register	
CCPxM<3:0> Bits	
CCPxX and CCPxY Bits	
Clock Sources	
Selection Using OSCCON Register	
Clock Switching	
Modes (table)	
Transition and the Watchdog Timer	38
Code Examples	~~~
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	89
Changing Prescaler Assignment from WDI	
to limer0	
Flash Program Read	
Implementing a Real-Time Clock Using a	
Limer1 Interrupt Service	
Loading the SSPBUF (SSPSR) Register	
Reading a 16-bit Free Running Timer	
Saving Status and W Registers in RAM	185
Writing a 16-bit Free Running Timer	
Code Protection	169, 192
Comparator Module	101
Analog input Connection Considerations	105
Associated Registers	165
	102
	105
Operation	104
	103
Outputs	105
Reference	103 163
External Signal	163
Internal Signal	163
Response Time	105
Comparator Specifications	163
Comparator Opecifications	163
Comparator Voltage Reference	163 218 167
Comparator Voltage Reference	163 218 167 168
Comparator Voltage Reference Associated Registers	163 218 167 168 29
Comparator Voltage Reference Associated Registers Computed GOTO	163 218 167 168 29 169
Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits	163 218 167 168 29 169 266
Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations Crystal and Ceramic Resonators	163 218 167 168 29 169 266 266
Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service	163 218 167 168 29 169 266 33 33
Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service Customer Notification Service	163 218 167 168 29 169 266 33 275 275
Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service Customer Notification Service	

D

Data Memory	15
Bank Select (RP1:RP0 Bits)	15
General Purpose Registers	15
Map for PIC16F737 and PIC16F767	16
Map for PIC16F747 and PIC16F777	17
Special Function Registers	18
DC and AC Characteristics	
Graphs and Tables	235
DC Characteristics	207, 216
Internal RC Accuracy	215
Power-Down and Supply Current	208
Development Support	201