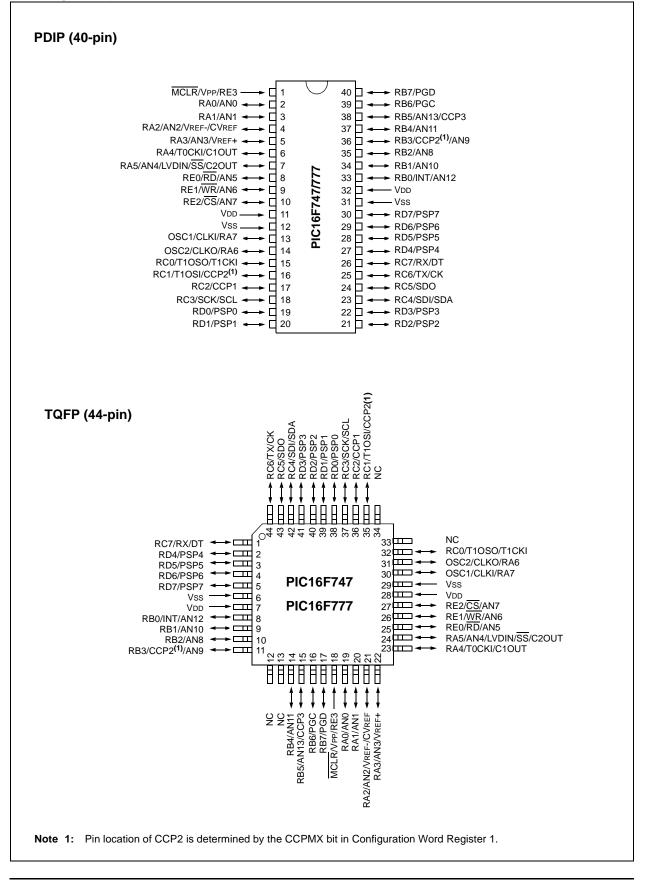


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f747t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 1-2:PIC16F737 AND PIC16F767 PINOUT DESCRIPTION

Pin Name	PDIP SOIC SSOP Pin #	QFN Pin #	l/O/P Type	Buffer Type	Description
OSC1/CLKI/RA7 OSC1	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS.
CLKI			I		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
RA7			I/O	ST	Digital I/O.
OSC2/CLKO/RA6 OSC2	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
CLKO			0		mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6			I/O	ST	Digital I/O.
MCLR/Vpp/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP			P	07	Programming voltage input.
RE3			I	ST	Digital input only pin.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0	2	27	I/O	TTL	Digital I/O.
ANO			1/0		Analog input 0.
RA1/AN1	3	28		TTL	
RA1	-	_	I/O		Digital I/O.
AN1			I		Analog input 1.
RA2/AN2/VREF-/CVREF	4	1		TTL	
RA2 AN2			I/O		Digital I/O. Analog input 2.
VREF-					A/D reference voltage input (low).
CVREF			0		Comparator voltage reference output.
RA3/AN3/Vref+	5	2		TTL	
RA3			I/O		Digital I/O.
AN3			I		Analog input 3.
Vref+			I		A/D reference voltage input (high).
RA4/T0CKI/C1OUT	6	3		ST	
RA4			I/O		Digital I/O – Open-drain when configured as output.
T0CKI C1OUT			0		Timer0 external clock input. Comparator 1 output bit.
RA5/AN4/LVDIN/SS/C2OUT	7	4	Ŭ	TTL	
RA5/AIN4/LVDIN/S5/C2OUT RA5	'	-	I/O		Digital I/O.
AN4			1		Analog input 4.
LVDIN			I/O		Low-Voltage Detect input.
SS			I		SPI slave select input.
C2OUT			0		Comparator 2 output bit.
Legend: I = input — = Not used) = output TL = TTL			= input/output P = power = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

PIC16F7X7

Pin Name	PDIP Pin #	QFN Pin #	TQFP Pin #	I/O/P Type	Buffer Type	Description
						PORTD is a bidirectional I/O port or Parallel Slave Por when interfacing to a microprocessor bus.
RD0/PSP0	19	38	38		ST/TTL ⁽³⁾	
RD0	15	50	00	I/O	OI/ITE	Digital I/O.
PSP0				I/O		Parallel Slave Port data.
RD1/PSP1	20	39	39		ST/TTL ⁽³⁾	
RD1				I/O		Digital I/O.
PSP1				I/O		Parallel Slave Port data.
RD2/PSP2	21	40	40		ST/TTL ⁽³⁾	
RD2				I/O		Digital I/O.
PSP2				I/O		Parallel Slave Port data.
RD3/PSP3	22	41	41		ST/TTL ⁽³⁾	
RD3				I/O		Digital I/O.
PSP3				I/O		Parallel Slave Port data.
RD4/PSP4	27	2	2		ST/TTL ⁽³⁾	
RD4				I/O		Digital I/O.
PSP4				I/O	(2)	Parallel Slave Port data.
RD5/PSP5	28	3	3		ST/TTL ⁽³⁾	
RD5				I/O		Digital I/O.
PSP5				I/O	(2)	Parallel Slave Port data.
RD6/PSP6	29	4	4		ST/TTL ⁽³⁾	
RD6 PSP6				I/O I/O		Digital I/O. Parallel Slave Port data.
		_	_	1/0	o 	Parallel Slave Port data.
RD7/PSP7	30	5	5	I/O	ST/TTL ⁽³⁾	Digital I/O
RD7 PSP7				1/O 1/O		Digital I/O. Parallel Slave Port data.
				1/0		
			05		o 	PORTE is a bidirectional I/O port.
RE0/RD/AN5	8	25	25	I/O	ST/TTL ⁽³⁾	Digital I/O
RE0 RD				1/O		Digital I/O. Read control for Parallel Slave Port.
AN5				i		Analog input 5.
RE1/WR/AN6	9	26	26	•	ST/TTL ⁽³⁾	
RE1	3	20	20	I/O	ST/TIL	Digital I/O.
WR				,, C		Write control for Parallel Slave Port.
AN6				I		Analog input 6.
RE2/CS/AN7	10	27	27		ST/TTL ⁽³⁾	
RE2				I/O		Digital I/O.
CS				I		Chip select control for Parallel Slave Port.
AN7				Ι		Analog input 7.
Vss	—	31		Р	—	Analog ground reference.
Vss	12, 31	6, 30	6, 29	Р	-	Ground reference for logic and I/O pins.
Vdd		8		Р	_	Analog positive supply.
Vdd	11, 32	7, 28	7, 28	Р	_	Positive supply for logic and I/O pins.
NC		13, 29	12, 13,		_	These pins are not internally connected. These pins
-		, _3	33, 34			should be left unconnected.
Legend: I = input		0 = ou		1	i	ut/output P = power

TABLE 1-3: PIC16F747 AND PIC16F777 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

5: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page	
Bank 2												
100h ⁽⁴⁾	INDF	Addressin	0000 0000	30, 180								
101h	TMR0	Timer0 Mo	Timer0 Module Register									
102h ⁽⁴⁾	PCL	Program (Program Counter (PC) Least Significant Byte									
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	21, 180	
104h ⁽⁴⁾	FSR	Indirect Da	ata Memory A	Address Poir	nter					XXXX XXXX	30, 180	
105h	WDTCON	_	_		WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	187	
106h	PORTB	PORTB D	ata Latch wh	en written: F	PORTB pins w	hen read				XXXX XXXX	64, 180	
107h	—	Unimplem	ented							—	—	
108h	—	Unimplem	ented							_	_	
109h	LVDCON	_	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	176	
10Ah ^(1,4)	PCLATH	_	_	_	Write Buffer f	or the upper	5 bits of the	Program C	Counter	0 0000	23, 180	
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	25, 180	
10Ch	PMDATA	EEPROM	EEPROM Data Register Low Byte								32, 181	
10Dh	PMADR	EEPROM	EEPROM Address Register Low Byte									
10Eh	PMDATH	_	_	EEPROM D	Data Register H	ligh Byte				xx xxxx	32, 181	
10Fh	PMADRH		_	_	—	EEPROM	Address Re	gister High	Byte	xxxx	32, 181	
Bank 3												
180h ⁽⁴⁾	INDF	Addressin	g this location	n uses conte	ents of FSR to	address dat	a memory (I	not a physic	al register)	0000 0000	30, 180	
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	22, 180	
182h ⁽⁴⁾	PCL	Program (Counter (PC)	Least Signif	ficant Byte					0000 0000	29, 180	
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	21, 180	
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory A	Address Poir	nter					XXXX XXXX	30, 180	
185h	_	Unimplem	ented							_		
186h	TRISB	PORTB D	ata Direction	Register						1111 1111	64, 181	
187h	—	Unimplem	ented							_	_	
188h	—		Unimplemented								_	
189h	_	Unimplemented								_	_	
18Ah ^(1,4)	PCLATH		_	_	Write Buffer f	or the upper	5 bits of the	Program C	Counter	0 0000	23, 180	
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	25, 180	
18Ch	PMCON1	<mark>(</mark> 6)			—		—	—	RD	10	32, 181	
18Dh	—	Reserved	, maintain cle	ar						_		
18Eh	—	Reserved	, maintain cle	ar						_		
18Fh		Reserved	, maintain cle	ar						_		

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> bits, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOT).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices (except for RE3), read as '0'.

6: This bit always reads as a '1'.

7: OSCCON<OSTS> bit resets to '0' with dual-speed start-up and LP, HS or HS-PLL selected as the oscillator.

8: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

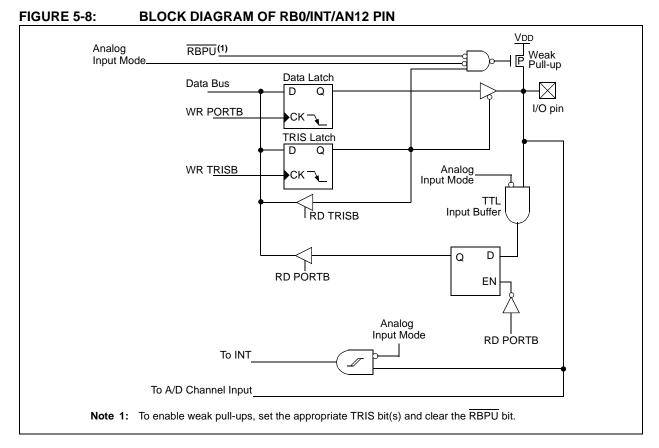
4.7.3.2 Returning to Primary Oscillator with a Reset

A Reset will clear SCS<1:0> back to '00'. The sequence for starting the primary oscillator following a Reset is the same for all forms of Reset, including POR. There is no transition sequence from the alternate system clock to the primary system clock on a Reset condition. Instead, the device will reset the state of the OSCCON register and default to the primary system clock. The sequence of events that take place after this will depend upon the value of the FOSC bits in the Configuration register. If the external oscillator is configured as a crystal (HS, XT or LP), the CPU will be held in the Q1 state until 1024 clock cycles have transpired on the primary clock. This is necessary because the crystal oscillator had been powered down until the time of the transition.

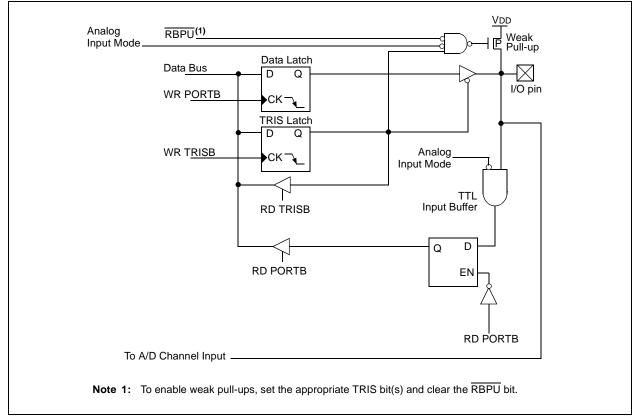
During the oscillator start-up time, instruction execution and/or peripheral operation is suspended.

Note:	If Two-Speed Clock Start-up mode is
	enabled, the INTRC will act as the system clock until the Oscillator Start-up Timer has
	timed out.

If the primary system clock is either RC, EC or INTRC, the CPU will begin operating on the first Q1 cycle following the wake-up event. This means that there is


no oscillator start-up time required because the primary clock is already stable; however, there is a delay between the wake-up event and the following Q2. An internal delay timer of 5-10 μ s will suspend operation after the Reset to allow the CPU to become ready for code execution. The CPU and peripheral clock will be held in the first Q1.

The sequence of events is as follows:


- 1. A device Reset is asserted from one of many sources (WDT, BOR, MCLR, etc.).
- 2. The device resets and the CPU start-up timer is enabled if in Sleep mode. The device is held in Reset until the CPU start-up time-out is complete.
- 3. If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in Reset. The OST and CPU start-up timers run in parallel.
- After both the CPU start-up timer and the Oscillator Start-up Timer have timed out, the device will wait for one additional clock cycle and instruction execution will begin.

TT1P(1) Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 T1OSI OSC1 TOST(4) OSC2 System Clock Peripheral Clock Sleep OSTS Program 0000h PC 0001h Counter

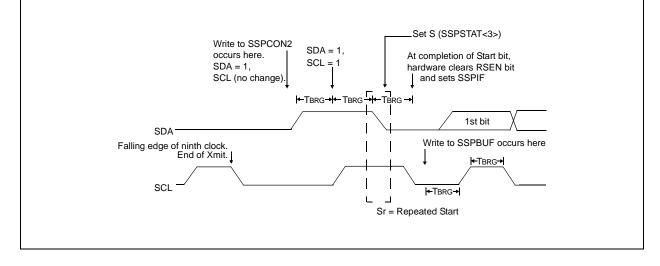
FIGURE 4-10: TIMING LP CLOCK TO PRIMARY SYSTEM CLOCK AFTER RESET (HS, XT, LP)

FIGURE 5-9: BLOCK DIAGRAM OF RB1/AN10 PIN

10.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

10.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

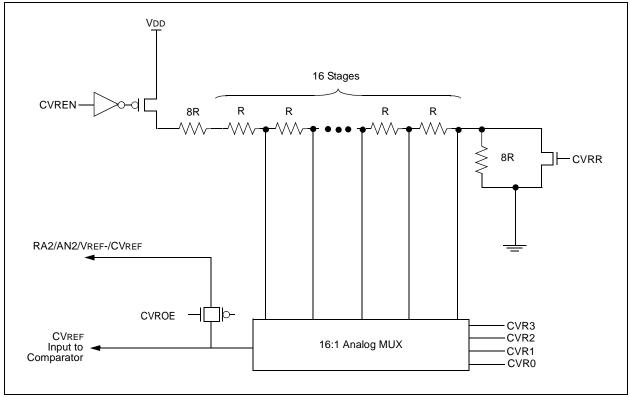

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 10-20: REPEATED START CONDITION WAVEFORM

PIC16F7X7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
9Dh	CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000-0000 (000- 0000
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

15.17.4 FAIL-SAFE OPTION

The Fail-Safe Clock Monitor (FSCM) is designed to allow the device to continue to operate even in the event of an oscillator failure.

The FSCM function is enabled by setting the FCMEN bit in Configuration Word Register 2.

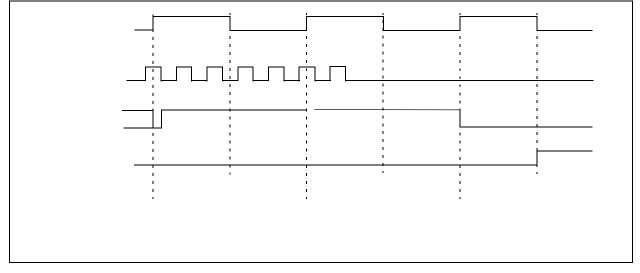
In the event of an oscillator failure, the FSCM will generate an oscillator fail interrupt and will switch the system clock over to the internal oscillator. The system will continue to come from the internal oscillator until the Fail-Safe condition is exited. The Fail-Safe condition is exited with either a Reset, the execution of a SLEEP instruction or a write to the SCS bits of a different value.

The frequency of the internal oscillator will depend upon the value contained in the IRCF bits. Another clock source can be selected via the IRCF and the SCS bits of the OSCCON register.

FIGURE 15-15: FSCM TIMING DIAGRAM

The FSCM sample clock is generated by dividing the INTRC clock by 64. This will allow enough time between FSCM sample clocks for a system clock edge to occur.

On the rising edge of the postscaled clock, the monitoring latch (CM = 0) will be cleared. On a falling edge of the primary or secondary system clock, the monitoring latch will be set (CM = 1). In the event that a falling edge of the postscaled clock occurs and the monitoring latch is not set, a clock failure has been detected.


While in Fail-Safe mode, a Reset will exit the Fail-Safe condition. If the primary clock source is configured for a crystal, the OST timer will wait for the 1024 clock cycles for the OST time-out and the device will continue running from the internal oscillator until the OST is complete. A SLEEPinstruction, or a write to the SCS bits (where SCS bits do not = 00), can be performed to put the device into a low-power mode.

If Reset occurs while in Fail-Safe mode and the primary clock source is EC or RC, then the device will immediately switch back to EC or RC mode.

Note: Two-Speed Start-up is automatically enabled when the Fail-Safe option is enabled.

15.17.4.1 Fail-Safe in Low-Power Mode

A change of SCS<1:0> or the SLEEP instruction will end the Fail-Safe condition. The system clock will default to the source selected by the SCS bits, which is either T1OSC, INTRC or none (Sleep mode). However, the FSCM will continue to monitor the system clock. If the secondary clock fails, the device will immediately switch to the internal oscillator clock. If OSFIE is set, an interrupt will be generated.

MSSP (I ² C Mode)	,
MSSP (SPI Mode)	
On-Chip Reset Circuit	,
OSC1/CLKI/RA7 Pin	L
OSC2/CLKO/RA6 Pin	
PIC16F737 and PIC16F767	
PIC16F747 and PIC16F777	
PORTC (Peripheral Output Override)	
RC<2:0>, RC<7:5> Pins	5
PORTC (Peripheral Output Override)	<i>,</i>
RC<4:3> Pins	5
PORTD (In I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
PWM Mode	
RA0/AN0:RA1/AN1 Pins	
RA2/AN2/VREF-/CVREF Pin	
RA3/AN3/VREF+ Pin	
RA4/T0CKI/C1OUT Pin	
RA5/AN4/LVDIN/SS/C2OUT Pin	
RB0/INT/AN12 Pin	
RB1/AN10 Pin	
RB2/AN8 Pin	
RB3/CCP2/AN9 Pin	
RB4/AN11 Pin	
RB5/AN13/CCP3 Pin61	
RB6/PGC Pin	
RB7/PGD Pin	
Recommended MCLR Circuit	
System Clock	
Timer0/WDT Prescaler73	
Timer1	
Timer2	
Watchdog Timer (WDT)	
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit	5
Brown-out Reset (BOR) 169, 172, 173, 179, 180	
, , , , , , , , , , , , , , , , , , , ,	

С

C Compilers
MPLAB C18202
Capture/Compare/PWM (CCP)87
Capture Mode89
CCP Pin Configuration89
Prescaler
Compare Mode 89
CCP Pin Configuration90
Software Interrupt Mode90
Special Event Trigger90
Special Event Trigger Output
Timer1 Mode Selection90
Interaction of Two CCP Modules87
PWM Mode91
Duty Cycle91
Example Frequencies and Resolutions
Period91
Setup for Operation92
Registers Associated with Capture, Compare and
Timer190
Registers Associated with PWM and Timer292
Timer Resources87
CCP1 Module87
CCP2 Module
CCP3 Module
CCPR1H Register

CCPR1L Register CCPR2H Register	
CCDD2U Degister	
-	
CCPR2L Register	
CCPR3H Register	
CCPR3L Register	
CCPxM<3:0> Bits	
CCPxX and CCPxY Bits	
Clock Sources	
Selection Using OSCCON Register	
Clock Switching	
Modes (table)	
Transition and the Watchdog Timer	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler Assignment from WDT	
to Timer0	
Flash Program Read	32
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Indirect Addressing	
Initializing PORTA	
Loading the SSPBUF (SSPSR) Register	
Reading a 16-bit Free Running Timer	
Saving Status and W Registers in RAM	
Writing a 16-bit Free Running Timer	
Code Protection	
Comparator Module	
Analog Input Connection Considerations	165
Analog Input Connection Considerations	165 165
Analog Input Connection Considerations Associated Registers Configuration	165 165 162
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset	165 165 162 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts	165 165 162 165 164
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation	165 165 162 165 164 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep	165 165 162 165 164 163 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs	165 165 162 165 164 163 165 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference	165 162 162 165 164 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal	165 162 165 164 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal	165 165 165 164 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time	165 162 162 165 164 163 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	

D

Data Memory	15
Bank Select (RP1:RP0 Bits)	15
General Purpose Registers	15
Map for PIC16F737 and PIC16F767	16
Map for PIC16F747 and PIC16F777	17
Special Function Registers	18
DC and AC Characteristics	
Graphs and Tables	235
DC Characteristics	207, 216
Internal RC Accuracy	215
Power-Down and Supply Current	208
Development Support	201