

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f747t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	PDIP Pin #	QFN Pin #	TQFP Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKI/RA7 OSC1	13	32	30	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS.
					CT.	pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
RA7				1/0	51	
OSC2/CLKO/RA6 OSC2	14	33	31	о	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	ST	Bidirectional I/O pin.
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active-low Reset to the device
VPP				Р		Programming voltage input.
RE3				I	ST	Digital input only pin.
						PORTA is a bidirectional I/O port.
RA0/AN0	2	19	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	20	20		TTL	
				1/0		Digital I/O.
	4	21	21		T TI	Analog input 1.
RA2/AN2/VREF-/OVREF	4	21	21	1/0		Digital I/O.
AN2				., C		Analog input 2.
VREF-				I		A/D reference voltage input (low).
CVREF				I		Comparator voltage reference output.
RA3/AN3/VREF+	5	22	22		TTL	
RA3				I/O		Digital I/O.
AN3						Analog input 3.
	6	00	00	1	OT	A/D reference voltage input (high).
RA4/TUCKI/CTUUT	6	23	23	1/0	51	Digital $I/O = Open-drain when configured as output$
TOCKI				1/0		Timer0 external clock input.
C1OUT				Ó		Comparator 1 output.
RA5/AN4/LVDIN/SS/C2OUT	7	24	24		TTL	
RA5				I/O		Digital I/O.
AN4				I		Analog input 4.
						Low-Voltage Detect input.
C2OUT						Comparator 2 output.
Legend: L = input	1		I Itout	'	I/O – inpu	P = power
— = Not used		TTL =	TTL inpu	ıt	ST = Sch	mitt Trigger input

IADLL I-J.	

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

5: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note, *AN556 "Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F7X7 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.2: There are no instructions/mnemonics

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

PIC16F7X7 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Note:	The	contents	of	the	PCLA	ΤН	are
	uncha	anged afte	r a	RETU	RN or	RET	FIE
	instru	ction is exe	ecut	ed. Th	e user	mus	t set
	up the	PCLATH f	or a	ny suk	oseque	nt CA	LLS
	or GO	TO S .					

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG BCF	0x500 PCLATH, 4	4
	BSF	PCLATH,	3 ;Select page 1 ;(800h-FFFh)
	CALL :	SUB1_P1	;Call subroutine in ;page 1 (800h-FFFh)
SUB1_P1	ORG	0x900	;page 1 (800h-FFFh)
	:		;called subroutine
	:		;page 1 (800h-FFFh)
RETURN	:		;return to Call ;subroutine in page 0 ;(000h-7FFh)

4.6 Clock Sources and Oscillator Switching

The PIC16F7X7 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low-frequency clock source. PIC16F7X7 devices offer three alternate clock sources. When enabled, these give additional options for switching to the various power-managed operating modes.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- Secondary oscillators
- Internal oscillator block (INTRC)

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock mode and the internal oscillator block. The particular mode is defined on POR by the contents of Configuration Word 1. The details of these modes are covered earlier in this chapter.

The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

PIC16F7X7 devices offer the Timer1 oscillator as a secondary oscillator. This oscillator continues to run when a SLEEP instruction is executed and is often the time base for functions, such as a real-time clock.

Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T1CKI and RC1/T1OSI/CCP2 pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground. The Timer1 oscillator is discussed in greater detail in Section 7.6 "Timer1 Oscillator".

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The 31.25 kHz INTRC source is also used as the clock source for several special features, such as the WDT, Fail-Safe Clock Monitor, Power-up Timer and Two-Speed Start-up.

The clock sources for the PIC16F7X7 devices are shown in Figure 4-6. See **Section 7.0** "**Timer1 Module**" for further details of the Timer1 oscillator. See **Section 15.1** "**Configuration Bits**" for Configuration register details.

4.6.1 OSCCON REGISTER

The OSCCON register (Register 4-2) controls several aspects of the system clock's operation, both in full power operation and in power-managed modes.

The system clock select bits, SCS1:SCS0, select the clock source that is used when the device is operating in power-managed modes. When the bits are cleared (SCS<1:0> = 0.0), the system clock source comes from

the main oscillator that is selected by the FOSC2:FOSC0 configuration bits in Configuration Register 1. When the bits are set in any other manner, the system clock source is provided by the Timer1 oscillator (SCS1:SCS0 = 01) or from the internal oscillator block (SCS1:SCS0 = 10). After a Reset, SCS<1:0> are always set to '00'.

The internal oscillator select bits, IRCF2:IRCF0, select the frequency output of the internal oscillator block that is used to drive the system clock. The choices are the INTRC source (31.25 kHz), the INTOSC source (8 MHz) or one of the six frequencies derived from the INTOSC postscaler (125 kHz to 4 MHz). Changing the configuration of these bits has an immediate change on the multiplexor's frequency output.

The OSTS and IOFS bits indicate the status of the primary oscillator and INTOSC source; these bits are set when their respective oscillators are stable. In particular, OSTS indicates that the Oscillator Start-up Timer has timed out.

4.6.2 CLOCK SWITCHING

Clock switching will occur for the following reasons:

- The FCMEN (CONFIG2<0>) bit is set, the device is running from the primary oscillator and the primary oscillator fails. The clock source will be the internal RC oscillator.
- The FCMEN bit is set, the device is running from the Timer1 oscillator (T1OSC) and T1OSC fails. The clock source will be the internal RC oscillator.
- Following a wake-up due to a Reset or a POR, when the device is configured for Two-Speed Start-up mode, switching will occur between the INTRC and the system clock defined by the FOSC<2:0> bits.
- A wake-up from Sleep occurs due to interrupt or WDT wake-up and Two-Speed Start-up is enabled. If the primary clock is XT, HS or LP, the clock will switch between the INTRC and the primary system clock after 1024 clocks and 8 clocks of the primary oscillator. This is conditional upon the SCS bits being set equal to '00'.
- SCS bits are modified from their original value.
- IRCF bits are modified from their original value.

Note: Because the SCS bits are cleared on any Reset, no clock switching will occur on a Reset unless the Two-Speed Start-up is enabled and the primary clock is XT, HS or LP. The device will wait for the primary clock to become stable before execution begins (Two-Speed Start-up disabled).

10.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 10-1: SSPSTAT: MSSP STATUS (SPI MODE) REGISTER (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	<u>r mode:</u>						
	1 = Input d	ata sampled	at end of da	ata output ti f data outpu	me It time			
	0 = Input u SPI Slave	ala sampieu mode:	at midule o	i uala oulpu				
	SMP must	be cleared v	vhen SPI is	used in Slav	ve mode.			
bit 6	CKE: SPI	Clock Edge	Select bit					
	1 = Transn 0 = Transn	nit occurs on nit occurs on	transition fr transition fr	om active to	o Idle clock s active clock s	state state		
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).	
bit 5	D/A: Data/	Address bit						
	Used in I ² 0	C mode only.						
bit 4	P: Stop bit							
	Used in I ² C	; mode only.	This bit is cle	ared when t	he MSSP m	odule is disa	bled, SSPEN	l is cleared.
bit 3	S: Start bit							
	Used in I ² C	C mode only.						
bit 2	R/W: Read	I/Write bit Inf	ormation					
	Used in I ² 0	C mode only.						
bit 1	UA: Updat	e Address bi	it					
	Used in I ² 0	C mode only.						
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)				
	1 = Receiv 0 = Receiv	e complete, e not comple	SSPBUF is ete, SSPBU	full F is empty				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	ʻ0'
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

10.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

10.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

10.3.10 BUS MODE COMPATIBILITY

Table 10-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 10-1: SPI BUS MODES

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISC	PORTC Da	ata Direction	Register						1111 1111	1111 1111
SSPBUF	Synchrono	us Serial Por	t Receive B	uffer/Trans	smit Registe	r			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	TRISA PORTA Data Direction Register									1111 1111
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 10-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.
 Note 1: The PSPIF and PSPIE bits are reserved on 28-pin devices; always maintain these bits clear.

10.4 I²C Mode

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCL) RC3/SCK/SCL
- Serial data (SDA) RC4/SDI/SDA

The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

FIGURE 10-7: MSSP BLOCK DIAGRAM (I²C[™] MODE)

10.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

SSPCON, SSPCON2 and SSPSTAT are the control and status registers in I^2C mode operation. The SSPCON and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

SSPADD register holds the slave device address when the SSP is configured in I^2C Slave mode. When the SSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

PIC16F7X7

REGISTER 10-4:	SSPCON: MSSP CONTROL (I ² C MODE) REGISTER 1 (ADDRESS 14h)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
	bit 7	-						bit 0			
bit 7	WCOL: W	rite Collision	Detect bit								
	In Master Transmit mode:										
	1 = A when a trans0 = No col	smission to b Ilision	be started (m	ust be clea	red in softwa	are)					
	In Slave Tr	ansmit mode	<u>e:</u>								
	1 = The S cleare 0 = No col	SPBUF regi d in software Ilision	ister is writte e)	en while it i	s still transr	nitting the p	previous woi	d (must be			
	In Receive	mode (Masi	ter or Slave i	nodes):							
	This is a "c	lon't care" bi	t.								
bit 6	SSPOV: R	eceive Over	flow Indicato	r bit							
	In Receive mode:										
	⊥ = A byte cleare	d in software	while the Sa	SPBUF reg	ister is still i	notaing the	previous by	te (must be			
	0 = No over	erflow	- /								
	<u>In Transmit mode:</u> This is a "don't care" bit in Transmit mode.										
bit 5	SSPEN: Synchronous Serial Port Enable bit										
	 1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins 0 = Disables serial port and configures these pins as I/O port pins 										
	Note:	When enab	led, the SDA	and SCL pi	ns must be p	roperly confi	igured as inp	ut or output.			
bit 4	CKP: SCK	Release Co	ontrol bit								
	In Slave mode:										
	1 = Release clock										
	In Master mode:										
	Unused in this mode.										
bit 3-0	SSPM3:SS	SPM0: Synch	nronous Seri	al Port Mod	le Select bits	3					
	1111 = I ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I ² C Firmware Controlled Master mode (slave Idle) 1000 = I ² C Master mode, clock = Fosc/(4 * (SSPADD + 1)) 0111 = I ² C Slave mode, 10-bit address										
	0110 = I ² C Slave mode, 7-bit address										
	Note: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.										
	l egend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'			
	-n = Value	at POR	'1' = Bi	t is set	'0' = Bit i	s cleared	x = Bit is u	inknown			

11.1 AUSART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the AUSART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 11-1 shows the formula for computation of the baud rate for different AUSART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

11.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 11-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X + 1))	Baud Rate = Fosc/(16(X + 1))
1	(Synchronous) Baud Rate = Fosc/(4(X + 1))	N/A

Legend: X = value in SPBRG (0 to 255).

TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 0000x
99h SPBRG Baud Rate Generator Register										0000 0000	0000 0000

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

11.2 AUSART Asynchronous Mode

In this mode, the AUSART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The AUSART transmits and receives the LSb first. The transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

Asynchronous mode is selected by clearing bit, SYNC (TXSTA<4>).

The AUSART asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

11.2.1 AUSART ASYNCHRONOUS TRANSMITTER

The AUSART transmitter block diagram is shown in Figure 11-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory so it is not available to the user.
2:	Flag bit TXIF is set when enable bit TXEN

Transmission is enabled by setting enable bit, TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 11-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 11-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to high-impedance.

In order to select 9-bit transmission, transmit bit, TX9 (TXSTA<6>), should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 11-1: AUSART TRANSMIT BLOCK DIAGRAM

FIGURE 11-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 11-9: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	x000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	x000 000x
1Ah	RCREG	AUSART Receive Register								0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.**Note 1:**Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

12.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-2. The maximum recommended impedance for analog sources is 2.5 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

EQUATION 12-1: ACQUISITION TIME

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2 \mu s + TC + [(Temperature - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ = CHOLD (RIC + RSS + RS) In(1/2047) = -120 pF (1 k Ω + 7 k Ω + 10 k Ω) In(0.0004885) = 16.47 μs
TACQ	= $2 \mu s + 16.47 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$ = 19.72 \mu s

- Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.
 - 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
 - **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 12-2: ANALOG INPUT MODEL

14.0 COMPARATOR VOLTAGE **REFERENCE MODULE**

The comparator voltage reference generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 14-1 lists the bit functions of the CVRCON register.

As shown in Figure 14-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very high-impedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

REGISTER 14-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS 9Dh)

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CVREN	CVROE	CVRR		CVR3	CVR2	CVR1	CVR0			
	bit 7							bit 0			
bit 7	CVREN : C	omparator V	oltage Refe	rence Enabl	e bit						
	1 = CVREF 0 = CVREF	circuit powe circuit powe	red on red down								
bit 6	CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin										
	0 = CVREF	0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin									
DIT 5	1 = 0 to 0.6 $0 = 0.25 \text{ C}^{2}$	mparator VRI 625 CVRSRC, VRSRC to 0.7	er Range S with CVRSF 2 CVRSRC,	election bit RC/24 step s with CVRSR	ize c/32 step siz	ze					
bit 4	Unimplem	ented: Read	as '0'								
bit 3-0	CVR3:CVF When CVR CVREF = (0 When CVR CVREF = 1/	R0: Compara <u>RR = 1:</u> CVR<3:0>/24 <u>RR = 0:</u> /4 • (CVRSRC	tor VREF Va 4) • (CVRSR c) + (CVR3:(lue Selectio C) CVR0/32) •	n bits 0 ≤ C' (CVRSRC)	VR3:CVR0 <u>s</u>	≤ 15				
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	nplemented	bit, read as '	0'			
	-n = Value	at POR	'1' = B	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown			

PIC16F7X7

REGIST	REGISTER 15-2: CONFIGURATION WORD REGISTER 2 (ADDRESS 2008h)												
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
—	—	—	—	_	—	_	BORSEN	_			_	IESO	FCMEN
bit 13													bit 0
bit 13-7	Unimplemented: Read as '1'												
bit 6	BOR	SEN: Br	own-out	Reset S	oftware	Enable	bit						
	Refer	to Conf	iguratior	Word F	Register	1, bit 6 f	or the funct	ion of th	nis bit.				
bit 5-2	Unimplemented: Read as '1'												
bit 1	IESO	: Interna	al Extern	al Switch	nover bit								
	 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled 												
bit 0	FCMEN: Fail-Safe Clock Monitor Enable bit												
	 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled 												
	Lege	nd:											
	R = F	Readable	e bit		W = V	Writable	bit	U = Uni	mpleme	nted bit, r	ead as '	0'	
	-n = \	Value at	POR		'1' =	Bit is se	t	'0' = Bit	is cleare	ed	x = Bit is	s unknov	vn

15.2 Reset

The PIC16F7X7 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT Wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The \overline{TO} and \overline{PD} bits are set or cleared differently in different Reset situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR or wake-up from Sleep, the CPU requires approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 15-1.

FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

18.4 DC Characteristics: PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

DC CH/	ARACT	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Conditions							
D060	lı∟	Input Leakage Current ^(2, 3) I/O ports	_	_	±1	μΑ	Vss \leq VPIN \leq VDD, pin at high-impedance			
D061		MCLR. RA4/T0CKI	_	_	±5	uΑ	$VSS \le VPIN \le VDD$			
D063		OSC1	_	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration			
D080	Vol	Output Low Voltage I/O ports			0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C			
D083		OSC2/CLKO (RC oscillator configuration)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C			
			—	—	0.6	V	IoL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
	Vон	Output High Voltage								
D090		I/O ports (Note 3)	Vdd - 0.7	_	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +125°C			
D092		OSC2/CLKO (RC oscillator configuration)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +125°C			
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C			
D150*	Vod	Open-Drain High Voltage	_	—	12	V	RA4 pin			
		Capacitive Loading Specs on Output Pins								
D100	Cosc2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF				
D102	Св	SCL, SDA in I ² C™ mode	—		400	pF				
		Program Flash Memory								
D130	ЕΡ	Endurance	100	1000	—	E/W	25°C at 5V			
D131	Vpr	VDD for Read	2.0	—	5.5	V				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X7 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

*

Param No.	Symbol	Charac	Min	Тур	Max	Units	Conditions			
90*	TSU:STA	Start Condition	100 kHz mode	4700		—	ns	Only relevant for Repeated		
		Setup Time	400 kHz mode	600	_	_		Start condition		
91*	THD:STA	Start Condition	100 kHz mode	4000	—	—	ns	After this period, the first clock		
		Hold Time	400 kHz mode	600	_	—		pulse is generated		
92*	TSU:STO	Stop Condition	100 kHz mode	4700	_	_	ns			
		Setup Time	400 kHz mode	600	—	—				
93	THD:STO	Stop Condition	100 kHz mode	4000	_	—	ns			
		Hold Time	400 kHz mode	600	—					

TABLE 18-11: I²C[™] BUS START/STOP BITS REQUIREMENTS

These parameters are characterized but not tested.

FIGURE 18-17: I²C[™] BUS DATA TIMING

FIGURE 19-17: △IPD BOR vs. VDD, -40°C TO +125°C (SLEEP MODE, BOR ENABLED AT 2.00V-2.16V)

FIGURE 19-23: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2