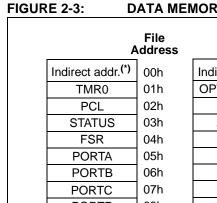


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f767-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DATA MEMORY MAP FOR PIC16F747 AND THE PIC16F777

0h 1h 2h 3h 4h 5h 6h 7h	Indirect addr. ^(*) OPTION_REG PCL STATUS FSR TRISA	80h 81h 82h 83h	Indirect addr. ^(*) TMR0 PCL	100h 101h 102h	Indirect addr. ^(*) OPTION_REG PCL	180h 181h
1h 2h 3h 4h 5h 6h	OPTION_REG PCL STATUS FSR	81h 82h 83h	TMR0 PCL	101h	OPTION_REG	181
2h 3h 4h 5h 6h	PCL STATUS FSR	82h 83h	PCL	102h	PCL	
4h 5h 6h	FSR	83h	0			182
5h 6h	FSR		STATUS	103h	STATUS	183
6h		84h	FSR	104h	FSR	184
		85h	WDTCON	105h		185
7h	TRISB	86h	PORTB	106h	TRISB	186
	TRISC	87h		107h		187
8h	TRISD	88h		108h		188
9h	TRISE	89h	LVDCON	109h		189
Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18C
Dh	PIE2		PMADR	10Dh		18D
Eh	PCON		PMDATH	10Eh		18E
Fh			PMADRH	10Fh		18F
0h	OSCTUNE			110h		190
1h	SSPCON2					
2h	PR2	92h				
3h	SSPADD	93h				
4h	SSPSTAT					
5h	CCPR3L					
6h	CCPR3H				Quant	
7h	CCP3CON					
8h	TXSTA					
9h	SPBRG		16 Bytes		16 Bytes	
Ah						
Bh	ADCON2					
Ch	CMCON	9Ch				
Dh	CVRCON	9Dh				
Eh	ADRESL	9Eh				
Fh	ADCON1	9Fh		11Fh		19F
0h	General Purpose Register 80 Bytes	A0h EFh	General Purpose Register 80 Bytes	120h 16Fh	General Purpose Register 80 Bytes	1A0
		F0h		170h		1F0
	Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh	
Fh	Dev. 1. 4	FFh	Bank 2	17Fh	Book 2	1FF
	Bank 1		Bank 2		Bank 3	
	Eh Fh 0h 1h 2h 3h 5h 6h 7h 8h 6h 7h 8h Ch Eh 6h	Eh PCON Fh OSCCON Oh OSCTUNE 1h SSPCON2 2h PR2 3h SSPADD 4h SSPSTAT 5h CCPR3L 6h CCPR3H 7h CCP3CON 8h TXSTA 9h SPBRG Ah Bh ADCON2 Ch CMCON Dh CVRCON Eh ADRESL Fh ADCON1 Oh General Purpose Register 80 Bytes Accesses 70h-7Fh	DhPIE28DhEhPCON8EhFhOSCCON8Fh0hOSCTUNE90h1hSSPCON291h2hPR292h3hSSPADD93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97h8hTXSTA98h9hSPBRG99hAh9AhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneral Purpose Register 80 BytesEFhFhAccesses 70h-7FhFfh	DhPIE28DhPMADREhPCON8EhPMDATHFhOSCCON8FhPMDATHOhOSCTUNE90h90h1hSSPCON291h92h2hPR292h93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97h8hTXSTA98h9hSPBRG99h16 Bytes92hAh9AhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneralPurposeRegister80 Bytes80 BytesFhAccesses70h-7FhFhFFhFFh	DhPIE28DhPMADR10DhEhPCON8EhPMDATH10EhFhOSCCON8FhPMADRH10Fh0hOSCTUNE90h110h1hSSPCON291h110h2hPR292h110h3hSSPADD93h110h4hSSPSTAT94h10Fh5hCCPR3L95h95h6hCCPR3H96hGeneral7hCCP3CON97hPurpose8hTXSTA98hRegister9hSPBRG99h16 BytesAh9Ah11FhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneralPurposeRegister80 Bytes16FhAccesses70h-7Fh16FhFh	DhPIE28DhPMADR10DhEhPCON8EhPMDATH10EhFhOSCCON8FhPMDATH10Eh0hOSCTUNE90h110h1hSSPCON291h2hPR292h3hSSPADD93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97hPurposeRegister8hTXSTA98h9hSPBRG99h16 Bytes16 BytesAh9AhBhADCON29BhChCMCON9Ch9ChDhCVRCON9Dh9DhEhADRESL9Eh9EhFhADCON19FhA0hGeneralPurposeRegister80 Bytes80 BytesEFhAccesses70h-7Fh70h-7FhFfhFhMCCSSAccesses70h-7FhFhMCCSSAccesses70h-7FhFhMCCSSAccesses70h-7FhFfhFhMCCSSAccesses70h-7FhFhTofh-7FhFhFfh

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to a	address dat	a memory (r	not a physic	al register)	0000 0000	30, 180
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	22, 180
82h ⁽⁴⁾	PCL	Program 0	Program Counter's (PC) Least Significant Byte								29, 180
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	21, 180
84h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter			•	•	xxxx xxxx	30, 180
85h	TRISA	PORTA D	ata Direction	Register						1111 1111	55, 181
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	64, 181
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	66, 181
88h ⁽⁵⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	67, 181
89h (5)	TRISE	IBF ⁽⁵⁾	OBF ⁽⁵⁾	IBOV (5)	PSPMODE ⁽⁵⁾	(8)	PORTE Da	ta Direction	bits	0000 1111	69, 181
	PCLATH	_			Write Buffer for	or the upper	5 bits of the	Program C	Counter	0 0000	23, 180
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	25, 180
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	24, 181
8Dh	PIE2	OSFIE	CMIE	LVDIE		BCLIE	—	CCP3IE	CCP2IE	000- 0-00	26, 181
8Eh	PCON		—	_	_	_	SBOREN	POR	BOR	lqq	28, 181
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS ⁽⁷⁾	IOFS	SCS1	SCS0	-000 1000	38, 181
90h	OSCTUNE	_		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36, 181
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	105
92h	PR2		riod Register							1111 1111	86, 181
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C™ mo	de) Address R	egister				0000 0000	101, 181
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	101, 181
95h	CCPR3L	Capture/C	ompare/PWI	M Register 3	(LSB)					xxxx xxxx	92
96h	CCPR3H	Capture/C	ompare/PWI	M Register 3	(MSB)					xxxx xxxx	92
97h	CCP3CON	_	_	CCP3X	CCP3Y	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	92
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	145, 181
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	145, 181
9Ah	—	Unimplem	ented							—	—
9Bh	ADCON2	—	_	ACQT2	ACQT1	ACQT0	_	_	—	00 0	154
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	55, 161
9Dh	CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	55, 167
9Eh	ADRESL	A/D Resul	A/D Result Register Low Byte xxxx xxxx								180
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	153, 181

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

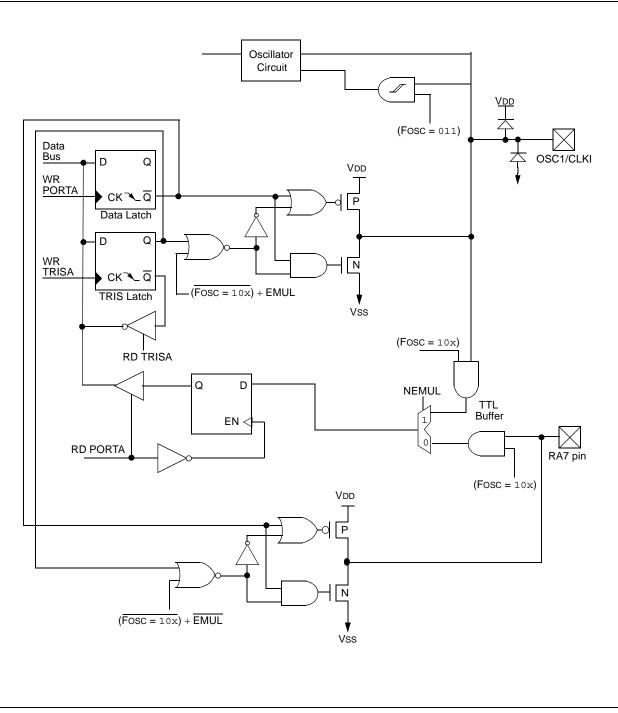
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> bits, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices (except for RE3), read as '0'.


6: This bit always reads as a '1'.

7: OSCCON<OSTS> bit resets to '0' with dual-speed start-up and LP, HS or HS-PLL selected as the oscillator.

8: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

PIC16F7X7

8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for the PWM mode of the CCP module(s). The TMR2 register is readable and writable and is cleared on any device Reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt, latched in flag bit, TMR2IF (PIR1<1>).

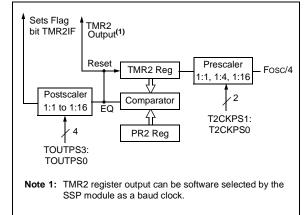
Timer2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

Register 8-1 shows the Timer2 Control register.

Additional information on timer modules is available in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

8.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module which optionally uses it to generate the shift clock.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

REGISTER 10-5:	SSPCON	2: MSSP CO	NTROL (I ²	C MODE) F	REGISTER	2 (ADDF	RESS 91h))	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
	bit 7							bit 0	
bit 7	1 = Enable	eneral Call Ena interrupt whe al call address	en a general	-	-	eceived in	the SSPSR	ł	
bit 6	ACKSTAT	: Acknowledge	e Status bit (Master Trans	smit mode o	only)			
		1 = Acknowledge was not received from slave0 = Acknowledge was received from slave							
bit 5	ACKDT: A	ACKDT: Acknowledge Data bit (Master Receive mode only)							
		1 = Not Acknowledge 0 = Acknowledge							
	Note: Value that will be transmitted when the user initiates an Acknowledge sequence the end of a receive.								
bit 4	ACKEN: A	cknowledge S	Sequence Er	nable bit (Ma	ster Receive	e mode onl	у)		
	Autom	 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle 							
bit 3		ceive Enable		node only)					
		1 = Enables Receive mode for I^2C 0 = Receive Idle							
bit 2	PEN: Stop	Condition En	able bit (Ma	ster mode on	ly)				
		Stop conditio ondition Idle	n on SDA ar	nd SCL pins.	Automatica	lly cleared	by hardwar	e.	
bit 1	RSEN: Re	peated Start C	Condition En	able bit (Mas	ter mode or	nly)			
		e Repeated Stated Stated Stated Stated Start cond		on SDA and S	SCL pins. A	utomaticall	y cleared by	hardware.	
bit 0	SEN: Start	Condition En	able/Stretch	Enable bit					
		<u>mode:</u> Start conditio ondition Idle	n on SDA ai	nd SCL pins.	Automatica	Illy cleared	by hardwar	e.	
	 In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is enabled for slave transmit only (PIC16F87X compatibility) Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle moduli this bit may not be set (no spooling) and the SSPBUF may not be written (or write to the SSPBUF are disabled). 								
	Legend:								
	R = Reada	able bit	W = W	ritable bit	U = Unimp	plemented	bit, read as	'0'	
	-n = Value	at POR	'1' = Bit	is set	'0' = Bit is	cleared	x = Bit is ι	unknown	

10.4.4 CLOCK STRETCHING

Both 7-bit and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

10.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock, at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 10-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

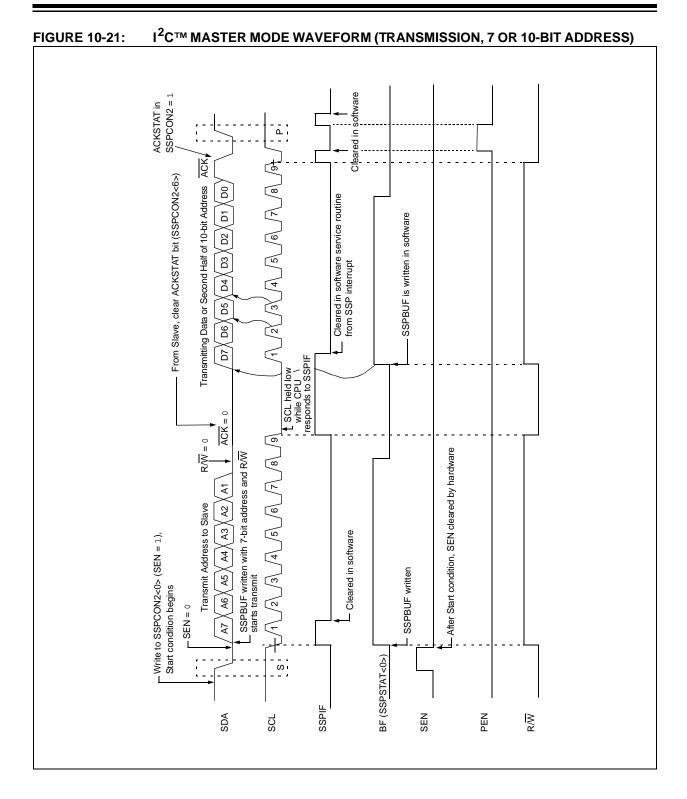
10.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address, with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

10.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

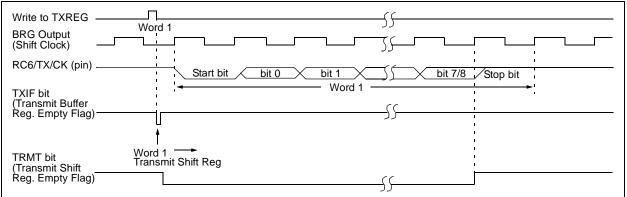

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 10-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

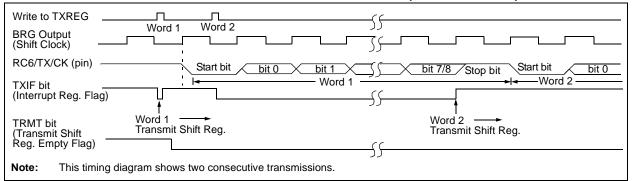
10.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the highorder bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 10-11).

PIC16F7X7



When setting up an Asynchronous Transmission, follow these steps:

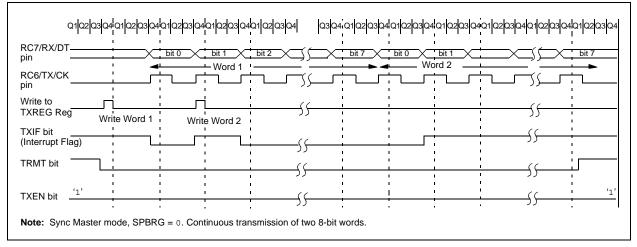

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART -	Transmit	Data Regi	ister					0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register								0000 0000	0000 0000	


Legend: x = unknown, — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
 Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all o Res	ther
0Bh, 8Bh, 10Bh,18Bh	INTCO N	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
19h	TXREG	AUSART	Transmit	Register						0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000	0000	0000

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

© 2003-2013 Microchip Technology Inc.

PIC16F7X7

REGISTER 12-1:	ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON				
	bit 7							bit 0				
bit 7-6	ADCS1:AI	D CS0: A/D C	onversion C	lock Select I	bits							
	If ADCS2 = 0:											
	000 = Fosc/2											
	001 = Fosc/8 010 = Fosc/32 011 = Frc (clock derived from an RC oscillation)											
	If ADCS2 =	<u>If ADCS2 = 1:</u>										
		00 = Fosc/4										
	01 = FOSC/16 10 = FOSC/64											
		clock derived	I from an RC	coscillation)								
bit 5-3	CHS<2:0>	: Analog Cha	nnel Select	bits								
		annel 00 (AN	,									
		annel 01 (AN annel 02 (AN										
		annel 03 (AN	,									
	0100 = Ch	annel 04 (AN	1 4)									
	0101 = Ch	annel 05 (AN	15) ⁽¹⁾									
		annel 06 (AN annel 07 (AN										
		annel 08 (AN										
		annel 09 (AN										
		annel 10 (AN annel 11 (AN	,									
		annel 12 (AN										
		annel 13 (AN	I 13)									
	111x = Un											
	Note 1:	•) will result i		•	product varia on as unimple	•					
bit 2	GO/DONE	: A/D Conver	sion Status	bit								
						an A/D conve ersion has cor		This bit is				
	0 = A/D co	onversion cor	npleted/not i	n progress								
bit 1	CHS<3>: /	Analog Chani	nel Select bi	t (see bit 5-3	B for bit sett	ings)						
bit 0		D Conversion										
		nverter modu		U U	on orating o	rroot						
	0 = A/D co	nverter is shu	ut-on and co	nsumes no	operating ci	urrent						
	Legend:											
	R = Reada	able bit	W = W	ritable bit	U = Unir	nplemented b	it, read as '()'				
	-n = Value			it is set		•	x = Bit is ur					
			· - D		t = Bit							

12.6 A/D Conversions

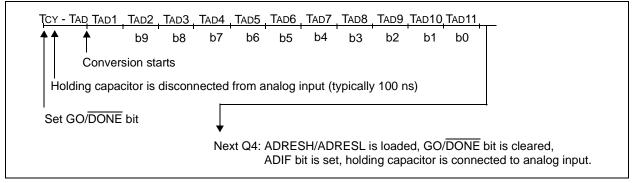
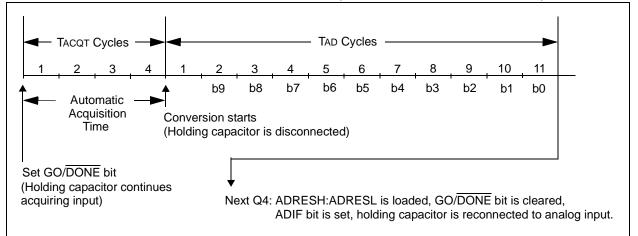

Figure 12-3 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 12-4 shows the operation of the A/D converter after the GO/DONE bit has been set, the ACQT2:ACQT0 bits are set to '010' and a 4 TAD acquisition time is selected before the conversion starts. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 12-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 12-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

12.7 A/D Operation During Sleep

The A/D module can operate during Sleep mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRESH register. If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in Sleep, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in Sleep, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

12.8 Effects of a Reset

A device Reset forces all registers to their Reset state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRESH register will contain unknown data after a Power-on Reset.

12.9 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRESH to the desired location). The appropriate analog input channel must be selected and an appropriate acquisition time should pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module but will still reset the Timer1 counter.

				-									
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B			e on ther sets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0	00x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
0Dh	PIR2	OSFIF	CMIF	LVDIF	_	BCLIF	—	CCP3IF	CCP2IF	000- 0	-00	000-	0-00
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
8Dh	PIE2	OSFIE	CMIE	LVDIE	_	BCLIE	_	CCP3IE	CCP2IE	000- 0	-00	000-	0-00
1Eh	ADRESH	A/D Resu	ult Registe	er High By	/te					xxxx x	xxx	uuuu	uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON	0000 0	000	0000	0000
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0	000	0000	0000
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0	000	uu0u	0000
85h	TRISA	PORTA D	ata Direc	tion Regis	ster					1111 1	111	1111	1111
09h	PORTE ⁽²⁾	_	—	_	_	RE3 ⁽³⁾	RE2	RE1	RE0	x	000		x000
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	(3)	PORTE Da	ta Directio	on bits	0000 1	111	0000	1111

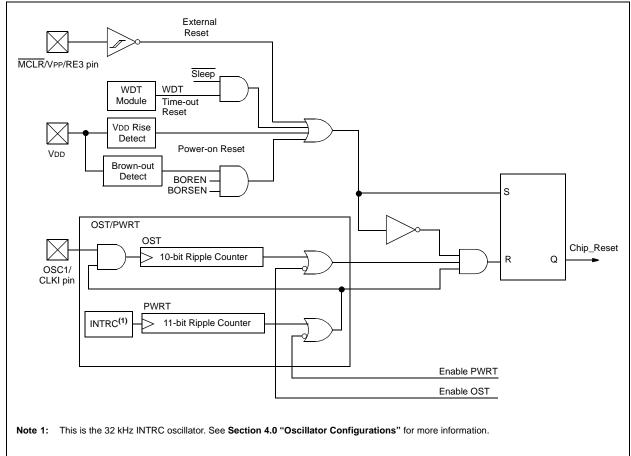
TABLE 12-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767 devices; always maintain these bits clear.

2: These registers are reserved on the PIC16F737/767 devices.

3: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.


15.2 Reset

The PIC16F7X7 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT Wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The \overline{TO} and \overline{PD} bits are set or cleared differently in different Reset situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR or wake-up from Sleep, the CPU requires approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 15-1.

FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

PIC16F7X7

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits<10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits, TO and PD, are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) – 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

TABLE 18-1: COMPARATOR SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage		± 5.0	± 10	mV	
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	—	—	dB	
300 300A	TRESP	Response Time ^{(1)*}	—	150	400 600	ns ns	PIC16F7X7 PIC16LF7X7
301	Тмс2о∨	Comparator Mode Change to Output Valid*	—	-	10	μS	

These parameters are characterized but not tested.

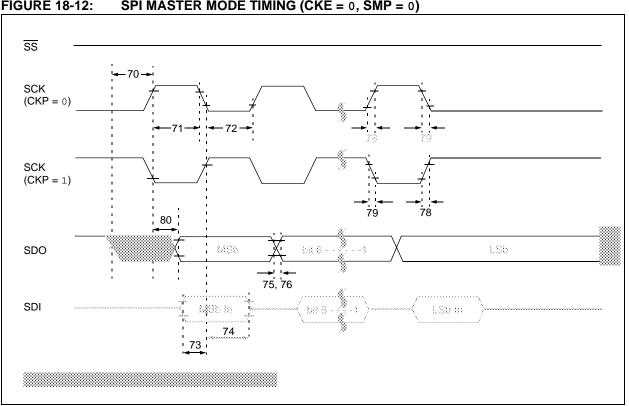
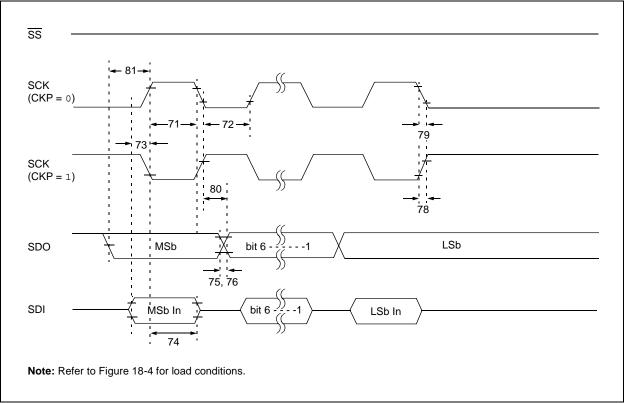

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 18-2: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < VDD < 5.5V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated).							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	Vres	Resolution	Vdd/24		VDD/32	LSb	
D311	VRAA	Absolute Accuracy		_	1/4 1/2	LSb LSb	Low Range (CVRR = 1) High Range (CVRR = 0)
D312	VRur	Unit Resistor Value (R)*	—	2k	—	Ω	
310	TSET	Settling Time ^{(1)*}	—		10	μS	


* These parameters are characterized but not tested.

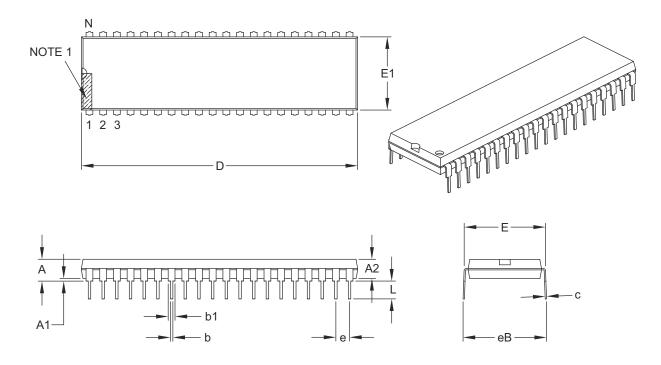

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transition from '0000' to '1111'.

FIGURE 18-12: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

For the most current package drawings, please see the Microchip Packaging Specification located at

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

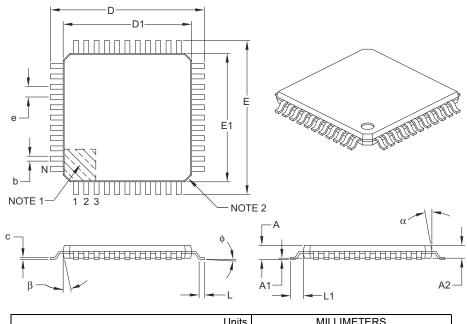
http://www.microchip.com/packaging

INCHES Units **Dimension Limits** MIN NOM MAX Number of Pins 40 Ν Pitch 100 BSC е .250 Top to Seating Plane А Molded Package Thickness A2 .125 .195 .015 Base to Seating Plane A1 _ _ Shoulder to Shoulder Width Е .590 .625 _ Molded Package Width .485 .580 E1 _ **Overall Length** 1.980 2.095 D _ Tip to Seating Plane .115 .200 L _ Lead Thickness .008 .015 с _ Upper Lead Width .030 .070 b1 _ Lower Lead Width b .014 .023 _ Overall Row Spacing § eВ .700 _ _

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN NOM MAX			
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	А	– – 1.20			
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11° 12° 13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

MSSP (I ² C Mode)	,
MSSP (SPI Mode)	
On-Chip Reset Circuit	,
OSC1/CLKI/RA7 Pin	L
OSC2/CLKO/RA6 Pin	
PIC16F737 and PIC16F767	
PIC16F747 and PIC16F777	
PORTC (Peripheral Output Override)	
RC<2:0>, RC<7:5> Pins	5
PORTC (Peripheral Output Override)	<i>,</i>
RC<4:3> Pins	5
PORTD (In I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
PWM Mode	
RA0/AN0:RA1/AN1 Pins	
RA2/AN2/VREF-/CVREF Pin	
RA3/AN3/VREF+ Pin	
RA4/T0CKI/C1OUT Pin	
RA5/AN4/LVDIN/SS/C2OUT Pin	
RB0/INT/AN12 Pin	
RB1/AN10 Pin	
RB2/AN8 Pin	
RB3/CCP2/AN9 Pin	
RB4/AN11 Pin	
RB5/AN13/CCP3 Pin61	
RB6/PGC Pin	
RB7/PGD Pin	
Recommended MCLR Circuit	
System Clock	
Timer0/WDT Prescaler73	
Timer1	
Timer2	
Watchdog Timer (WDT)	
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit	5
Brown-out Reset (BOR) 169, 172, 173, 179, 180	
, , , , , , , , , , , , , , , , , , , ,	

С

C Compilers
MPLAB C18202
Capture/Compare/PWM (CCP)87
Capture Mode89
CCP Pin Configuration89
Prescaler
Compare Mode 89
CCP Pin Configuration90
Software Interrupt Mode90
Special Event Trigger90
Special Event Trigger Output
Timer1 Mode Selection90
Interaction of Two CCP Modules87
PWM Mode91
Duty Cycle91
Example Frequencies and Resolutions
Period91
Setup for Operation92
Registers Associated with Capture, Compare and
Timer190
Registers Associated with PWM and Timer292
Timer Resources87
CCP1 Module87
CCP2 Module
CCP3 Module
CCPR1H Register

CCPR1L Register CCPR2H Register	
CCDD2U Degister	
-	
CCPR2L Register	
CCPR3H Register	
CCPR3L Register	
CCPxM<3:0> Bits	
CCPxX and CCPxY Bits	
Clock Sources	
Selection Using OSCCON Register	
Clock Switching	
Modes (table)	
Transition and the Watchdog Timer	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler Assignment from WDT	
to Timer0	
Flash Program Read	32
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Indirect Addressing	
Initializing PORTA	
Loading the SSPBUF (SSPSR) Register	
Reading a 16-bit Free Running Timer	
Saving Status and W Registers in RAM	
Writing a 16-bit Free Running Timer	
Code Protection	
Comparator Module	
Analog Input Connection Considerations	165
Analog Input Connection Considerations	165 165
Analog Input Connection Considerations Associated Registers Configuration	165 165 162
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset	165 165 162 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts	165 165 162 165 164
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation	165 165 162 165 164 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep	165 165 162 165 164 163 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs	165 165 162 165 164 163 165 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference	165 162 162 165 164 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal	165 162 165 164 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal	165 165 165 164 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time	165 162 162 165 164 163 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	

D

Data Memory	15
Bank Select (RP1:RP0 Bits)	15
General Purpose Registers	15
Map for PIC16F737 and PIC16F767	16
Map for PIC16F747 and PIC16F777	17
Special Function Registers	18
DC and AC Characteristics	
Graphs and Tables	235
DC Characteristics	207, 216
Internal RC Accuracy	215
Power-Down and Supply Current	208
Development Support	201

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769386

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.