

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f767-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

DATA MEMORY MAP FOR PIC16F747 AND THE PIC16F777

File Address			File Address		File Address				
Indirect addr (*)	00h	Indirect addr (*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180		
TMRO	01h	OPTION REG	81h	TMR0	101h	OPTION REG	18		
PCI	02h	PCI	82h	PCL	102h	PCL	18		
	03h		0211 83h	STATUS	103h	STATUS	18		
FSR	04h	ESR	84h	FSR	104h	FSR	184		
PORTA	05h	TRISA	85h	WDTCON	105h		18!		
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186		
PORTC	07h	TRISC	87h		107h		187		
PORTD	08h	TRISD	88h		108h		188		
PORTE	09h	TRISE	89h	LVDCON	109h		189		
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/		
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18		
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	180		
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18		
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18		
TMR1H	0Fh	OSCCON	8Eh	PMADRH	10Fh		18		
T1CON	10h	OSCTUNE	90h		110h		19		
TMR2	11h	SSPCON2	91h						
T2CON	12h	PR2	92h						
SSPBUF	13h	SSPADD	93h						
SSPCON	14h	SSPSTAT	94h						
CCPR1L	15h	CCPR3L	95h						
CCPR1H	16h	CCPR3H	96h						
CCP1CON	17h	CCP3CON	97h	General		General			
RCSTA	18h	TXSTA	98h	Register		Register			
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes			
RCREG	1Ah		9Ah						
CCPR2L	1Bh	ADCON2	9Bh						
CCPR2H	1Ch	CMCON	9Ch						
CCP2CON	1Dh	CVRCON	9Dh						
ADRESH	1Eh	ADRESL	9Eh						
ADCON0	1Fh	ADCON1	9Fh		11Fh		19		
	20h	General	A0h	General	120h	General	1A		
		Purpose		Purpose		Purpose			
General		Register 80 Bytes		Register 80 Bytes		Register			
Register		UU Dytes	FFb	00 Dytes	16Fb	00 Dytes	1=		
			F0h		170h		1F(
SO DYIES		Accesses		Accesses		Accesses			
		70h-7Fh		70h-7Fh		70h-7Fh			
	7Fb		FFh		17Fh		1F		
		Bank 1		Bank 2		Bank 3			

5.5 PORTE and TRISE Register

This section is not applicable to the PIC16F737 or PIC16F767.

PORTE has four pins, RE0/RD/AN5, RE1/WR/AN6, RE2/CS/AN7 and MCLR/VPP/RE3, which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers. RE3 is only available as an input if MCLRE is '0' in Configuration Word 1.

I/O PORTE becomes control inputs for the microprocessor port when bit, PSPMODE (TRISE<4>), is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

Register 5-1 shows the TRISE register which also controls the Parallel Slave Port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

PORTE FUNCTIONS

FIGURE 5-19: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input. For RD (PSP mode): 1 = Idle 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input. For WR (PSP mode): 1 = Idle 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input. For CS (PSP mode): 1 = Device is not selected 0 = Device is selected
MCLR/Vpp/RE3	bit 3	ST	Input, Master Clear (Reset) or programming input voltage.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	Value on: POR, BOR	Value on all other Resets	
09h	PORTE				_	RE3	RE2	RE1	RE0	x000	x000	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_(1)	PORTE Data Direction bits			0000 1111	0000 1111	
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2 PCFG1		PCFG0	0000 0000	0000 0000	

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

TABLE 5-9:

7.2 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 **Timer1 Counter Operation**

FIGURE 7-1:

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized **Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

TIMER1 INCREMENTING EDGE

9.4 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following and is configured by CCPxCON<3:0>:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

9.4.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an										
	output, a write to the port can cause a										
	capture condition.										

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.4.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

9.4.4 CCP PRESCALER

There are four prescaler settings specified by bits, CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON NEW CAPT DS	;Turn CCP module off
HOVEW		;the new prescaler ;move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this ;value

9.5 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

COMPARE MODE OPERATION BLOCK DIAGRAM

Special Event Trigger will:

- clear TMR1H and TMR1L registers
 - NOT set interrupt flag bit, TMR1IF (PIR1<0>)
 - (for CCP2 only) set the GO/DONE bit (ADCON0<2>)

PIC16F7X7

10.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register, initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- · Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge Transmit
- Repeated Start

© 2003-2013 Microchip Technology Inc.

10.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 10-18).

FIGURE 10-18: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

10.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 10-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 10-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 10-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

11.3 AUSART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit, CSRC (TXSTA<7>).

11.3.1 AUSART SYNCHRONOUS MASTER TRANSMISSION

The AUSART transmitter block diagram is shown in Figure 11-6. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit, TXIF (PIR1<4>), is set. The interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit, TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 11-9). The transmission can also be started by first loading the TXREG register and then setting bit TXEN (Figure 11-10). This is advantageous when slow baud rates are selected since the BRG is kept in Reset when bits TXEN, CREN and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to highimpedance. If either bit CREN or bit SREN is set during a transmission, the transmission is aborted and the DT pin reverts to a high-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic, however, is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word) and after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting since bit TXEN is still set. The DT line will immediately switch from High-Impedance Receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" value to TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 13-2).

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. **Section 14.0 "Comparator Voltage Reference Module"** contains a detailed description of the comparator voltage reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 110 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage, or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0 "Electrical Characteristics").

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4:>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

13.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

13.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Off mode, CM<2:0> = 111. This ensures compatibility to the PIC16F87X devices.

13.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 13-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 13-1: REGISTERS ASSOCIATED WITH COMPARATOR MOD	ULE
--	-----

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets	
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111	
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000	
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u	
0Dh	PIR2	OSFIF	CMIF	LVDIF	_	BCLIF	_	CCP3IF	CCP2IF	000- 0-00	000- 0-00	
8Dh	PIE2	OSFIE	CMIE	LVDIE	_	BCLIE	—	CCP3IE	CCP2IE	000- 0-00	000- 0-00	
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	uu0u 0000	
85h	35h TRISA PORTA Data Direction Register											

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

14.0 COMPARATOR VOLTAGE **REFERENCE MODULE**

The comparator voltage reference generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 14-1 lists the bit functions of the CVRCON register.

As shown in Figure 14-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very high-impedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

REGISTER 14-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS 9Dh)

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
	CVREN	CVROE	CVRR		CVR3	CVR2	CVR1	CVR0						
	bit 7							bit 0						
bit 7	CVREN: Comparator Voltage Reference Enable bit													
	1 = CVREF 0 = CVREF	 1 = CVREF circuit powered on 0 = CVREF circuit powered down 												
bit 6	CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin 0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin													
	0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin													
DIT 5	1 = 0 to 0.6 $0 = 0.25 \text{ C}^{2}$	Mparator VRI 625 CVRSRC, VRSRC to 0.7	er Range S with CVRSF 2 CVRSRC,	election bit RC/24 step s with CVRSR	ize c/32 step siz	ze								
bit 4	Unimplem	ented: Read	l as '0'											
bit 3-0	CVR3:CVF When CVR CVREF = (0 When CVR CVREF = 1/	CVR3:CVR0: Comparator VREF Value Selection bits $0 \le CVR3:CVR0 \le 15$ <u>When CVRR = 1:</u> CVREF = (CVR<3:0>/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = 1/4 • (CVRSRC) + (CVR3:CVR0/32) • (CVRSRC)												
	Legend:													
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'													
	-n = Value	at POR	'1' = B	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown						

PIC16F7X7

REGIST	TER 15	5-2: 0	CONFIG	URATI	ON WC	DRD RE	EGISTER 2	2 (ADD	RESS 2	2008h)			
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
—	—	—	—	_	—	_	BORSEN	_			_	IESO	FCMEN
bit 13													bit 0
bit 13-7	3-7 Unimplemented: Read as '1'												
bit 6	BORSEN: Brown-out Reset Software Enable bit												
	Refer to Configuration Word Register 1, bit 6 for the function of this bit.												
bit 5-2	Unim	plemen	ted: Rea	ad as '1'									
bit 1	IESO	: Interna	al Extern	al Switch	nover bit								
	1 = In 0 = In	nternal E Iternal E	xternal S xternal S	Switchov Switchov	er mode er mode	e enable e disable	d ed						
bit 0	FCM	EN: Fail	-Safe Cl	ock Mon	itor Enal	ble bit							
	 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled 												
	Lege	nd:											
	R = F	Readable	e bit		W = V	Writable	bit	U = Uni	mpleme	nted bit, r	ead as '	0'	
	-n = \	Value at	POR		'1' =	Bit is se	t	'0' = Bit	is cleare	ed	x = Bit is	s unknov	vn

15.10.1 REFERENCE VOLTAGE SET POINT

The internal reference voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low-voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low-voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 15-6.

15.10.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

15.11 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

15.12 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.

Note: If the LVD is enabled and the BOR module is not enabled, the band gap will require a start-up time of no more than 50 μs before the band gap reference is stable. Before enabling the LVD interrupt, the user should ensure that the band gap reference voltage is stable by monitoring the IRVST bit in the LVDCON register. The LVD could cause erroneous interrupts before the band gap is stable.

15.13 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs; then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS); when the OST ends, the device comes out of Reset.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X7 device operating in parallel.

Table 15-3 shows the Reset conditions for the Status, PCON and PC registers, while Table 15-4 shows the Reset conditions for all the registers.

15.14 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, POR. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial												
PIC16F73 (Indus	37/747/767/777 strial, Extended)	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $											
Param No.	Device	Typ Max Units Conditions											
	Module Differential Currents (AlwDT, AlBOR, AlLVD, AlOSCB, AlAD)												
D025 (∆IOSCB)	Timer1 Oscillator	1.7	2.3	μΑ	-40°C		32 kHz on Timer1						
		1.8	2.3	μΑ	+25°C	VDD = 2.0V							
		2.0	2.3	μΑ	+85°C								
		2.2	3.8	μΑ	-40°C								
		2.6	3.8	μΑ	+25°C	VDD = 3.0V							
		2.9	3.8	μΑ	+85°C								
		3.0	6.0	μΑ	-40°C								
		3.2	6.0	μΑ	+25°C	VDD = 5.0V							
		3.4	7.0	μΑ	+85°C								
D026	A/D Converter	0.001	2.0	μA	-40°C to +85°C	VDD = 2.0V							
(ΔIAD)		0.001	2.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on Sloop not converting						
		0.003	2.0	μA	-40°C to +85°C	VDD = 5.0V	A/D on, Sleep, not converting						
	Extended devices	4	8	mA	-40°C to +125°C	VDD = 5.0V							

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

PIC16F7X7

TABLE 18-9: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F747/777 DEVICES ONLY)

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow or \overline{CS} \uparrow$	(setup time)	20 25	_	_	ns ns	Extended range only
63*	TwrH2dtI	\overline{WR} \uparrow or \overline{CS} \uparrow to Data In Invalid	PIC16F7X7	20			ns	
		(hold time)	PIC16LF7X7	35	—		ns	
64	TrdL2dtV	$\overline{RD} \downarrow and \ \overline{CS} \downarrow to \ Data \ Out \ Valid$		_	_	80 90	ns	Extended range only
65	TrdH2dtI	$\overline{RD} \uparrow \text{ or } \overline{CS} \downarrow \text{ to Data Out Invalid}$		10		30	ns	
	* Those pa	ramotors are characterized but not	tostod					

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 18-13: AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER & SLAVE)						
		Clock High to Data Out Valid	PIC16F7X7	—	—	80	ns	
			PIC16LF7X7		-	100	ns	
121 TCKRF	TCKRF	KRF Clock Out Rise Time and Fall Time (Master mode)	PIC16F7X7	—	—	45	ns	
			PIC16LF7X7	—	—	50	ns	
122	TDTRF	Data Out Rise Time and Fall Time	PIC16F7X7	—	—	45	ns	
			PIC16LF7X7		—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-19: AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-14: AUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before $CK \downarrow (DT$ setup time)	15	_	_	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	Dimension Limits			MAX
Number of Pins	Ν			
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B