

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f767-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F737 PIC16F767
- PIC16F747 PIC16F777

PIC16F737/767 devices are available only in 28-pin packages, while PIC16F747/777 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X7 family share common architecture with the following differences:

- The PIC16F737 and PIC16F767 have one-half of the total on-chip memory of the PIC16F747 and PIC16F777.
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5.
- The 28-pin devices have 16 interrupts, while the 40/44-pin devices have 17.
- The 28-pin devices have 11 A/D input channels, while the 40/44-pin devices have 14.
- The Parallel Slave Port is implemented only on the 40/44-pin devices.
- Low-Power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.

- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to **Section 15.17** "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.

The available features are summarized in Table 1-1. Block diagrams of the PIC16F737/767 and PIC16F747/777 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F737	PIC16F747	PIC16F767	PIC16F777
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	368	368	368	368
Interrupts	16	17	16	17
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM Modules	3	3	3	3
Master Serial Communications	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	11 Input Channels	14 Input Channels	11 Input Channels	14 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: PIC16F7X7 DEVICE FEATURES

3.0 READING PROGRAM MEMORY

The Flash program memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

bit bit bit

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices can have up to 8K words of program Flash, with an address range from 0h to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as '0's.

3.1 PMADR

The address registers can address up to a maximum of 8K words of program Flash.

When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADR register. The upper Most Significant bits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit, RD, initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
	reserved	_	—	—	—	_	—	RD
	bit 7							bit 0
7	Reserved:	Read as '1'						
6-1	Unimplem	ented: Read	as '0'					
0	RD: Read (Control bit						
	1 = Initiate in softv	s a Flash re vare.	ad, RD is cle	eared in har	dware. The I	RD bit can o	only be set (r	ot cleared)
	0 = Flash r	ead comple	ted					
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'
	-n = Value	at POR	'1' = B	lit is set	'0' = Bit i	s cleared	x = Bit is u	Inknown

3.3 Reading the Flash Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit, RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction; therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code-Protect

Flash program memory has its own code-protect mechanism. External read and write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal Flash program memory, regardless of the state of the code-protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATH

EXAMPLE 3-1: FLASH PROGRAM READ

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on: BOR	Valu all c Res	e on other sets
10Dh	PMADR	EEPROM A	Address	Regist	er Low E	Byte				xxxx	xxxx	uuuu	uuuu
10Fh	PMADRH	—		_		EEPRON	Address	Register H	ligh Byte		xxxx	u	uuuu
10Ch	PMDATA	EEPROM [Data Re	gister L	ow Byte					xxxx	xxxx	uuuu	uuuu
10Eh	PMDATH	—		EEPR	OM Data	a Register	High Byte	9		xx	xxxx	uu	uuuu
18Ch	PMCON1	reserved ⁽¹⁾	_		_	_		_	RD	1	0	1	0

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used during Flash access. **Note 1:** This bit always reads as a '1'.

PIC16F7X7

PIC16F7X7

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP2⁽¹⁾/AN9 PIN

7.2 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 **Timer1 Counter Operation**

FIGURE 7-1:

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized **Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

TIMER1 INCREMENTING EDGE

10.4.4 CLOCK STRETCHING

Both 7-bit and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

10.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock, at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 10-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

10.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address, with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

10.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 10-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

10.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the highorder bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 10-11).

10.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate a receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 10.4.7** "**Baud Rate Generator**" for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required Start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 13-2).

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. **Section 14.0 "Comparator Voltage Reference Module"** contains a detailed description of the comparator voltage reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 110 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage, or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0 "Electrical Characteristics").

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4:>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

14.0 COMPARATOR VOLTAGE **REFERENCE MODULE**

The comparator voltage reference generator is a 16-tap resistor ladder network that provides a fixed voltage reference when the comparators are in mode '110'. A programmable register controls the function of the reference generator. Register 14-1 lists the bit functions of the CVRCON register.

As shown in Figure 14-1, the resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The comparator reference supply voltage (also referred to as CVRSRC) comes directly from VDD. It should be noted, however, that the voltage at the top of the ladder is CVRSRC - VSAT, where VSAT is the saturation voltage of the power switch transistor. This reference will only be as accurate as the values of CVRSRC and VSAT.

The output of the reference generator may be connected to the RA2/AN2/VREF-/CVREF pin. This can be used as a simple D/A function by the user if a very high-impedance load is used. The primary purpose of this function is to provide a test path for testing the reference generator function.

REGISTER 14-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS 9Dh)

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVREN	CVROE	CVRR		CVR3	CVR2	CVR1	CVR0
	bit 7							bit 0
bit 7	CVREN : C	omparator V	oltage Refe	rence Enabl	e bit			
	1 = CVREF 0 = CVREF	circuit powe circuit powe	red on red down					
bit 6	CVROE: C 1 = CVREF	omparator V voltage leve	REF Output	Enable bit n RA2/AN2/	VREF-/CVRE	F pin		
	0 = CVREF	voltage leve	l is disconne	ected from F	RA2/AN2/VR	EF-/CVREF p	Din	
DIT 5	1 = 0 to 0.6 $0 = 0.25 \text{ C}^{2}$	Mparator VRI 625 CVRSRC, VRSRC to 0.7	er Range S with CVRSF 2 CVRSRC,	election bit RC/24 step s with CVRSR	ize c/32 step siz	ze		
bit 4	Unimplem	ented: Read	l as '0'					
bit 3-0	CVR3:CVF When CVR CVREF = (0 When CVR CVREF = 1/	R0: Compara <u>RR = 1:</u> CVR<3:0>/24 <u>RR = 0:</u> /4 • (CVRSRC	tor VREF Va 4) • (CVRSR c) + (CVR3:(lue Selectio C) CVR0/32) •	n bits 0 ≤ C' (CVRSRC)	VR3:CVR0 <u>s</u>	≤ 15	
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	nplemented	bit, read as '	0'
	-n = Value	at POR	'1' = B	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
TRISA	1111 1111	1111 1111	սսսս սսսս
TRISB	1111 1111	1111 1111	սսսս սսսս
TRISC	1111 1111	1111 1111	uuuu uuuu
TRISD	1111 1111	1111 1111	นนนน นนนน
TRISE (PIC16F737/767) TRISE (PIC16F747/777)	1 0000 1111	u 0000 1111	1 uuuu uuuu
PIE1	0000 0000	0000 0000	-uuu uuuu
PIE2	000- 0-00	000- 0-00	uuu- u-uu
PCON	lqq	uuu	uuu
OSCCON	-000 1000	-000 1000	-uuu uuuu
OSCTUNE	00 0000	00 0000	uu uuuu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	นนนน นนนน
SSPSTAT	0000 0000	0000 0000	սսսս սսսս
TXSTA	0000 -010	0000 -010	uuuu -ulu
SPBRG	0000 0000	0000 0000	սսսս սսսս
CMCON	0000 0111	0000 0111	սսսս սսսս
CVRCON	000- 0000	000- 0000	uuu- uuuu
WDTCON	0 1000	0 1000	u uuuu
ADRESL	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	0000 0000	0000 0000	uuuu uuuu
ADCON2	00 0	00 0	uuuu uuuu
PMDATA	xxxx xxxx	uuuu uuuu	սսսս սսսս
PMADR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PMDATH	xx xxxx	uu uuuu	uu uuuu
PMADRH	xxxx	uuuu	uuuu
PMCON1	10	1u	1u
LVDCON	00 0101	00 0101	uu uuuu

TABLE 15-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, — = unimplemented bit, read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 15-3 for Reset value for specific condition.

TABLE 16-2: PIC16F7X7 INSTRUCTION S

Mnemonic,		Description	Cycles	14-Bit Opcode				Status	Notes
Oper	ands	Description	Cycles	MSb			LSb	Affected	NOTES
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIC	NS			-	
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	1S				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1	When an	I/O register is modified as a function of itself (e.g.	MOVE D	ORTB	1) the	value i	ised wil	l he that val	

present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indus	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F73 (Indus	37/747/767/777 strial, Extended)	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param No. Device Typ Max Units Conditions											
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	270	315	μΑ	-40°C						
		280	310	μΑ	+25°C	VDD = 2.0V					
		285	310	μΑ	+85°C						
	PIC16LF7X7	460	610	μΑ	-40°C						
		450	600	μΑ	+25°C	VDD = 3.0V	Fosc = 4 MHz				
		450	600	μA	+85°C		(RC Oscillator) ⁽³⁾				
	All devices	900	1060	μΑ	-40°C						
		890	1050	μA	+25°C						
		890	1050	μA	+85°C	VDD = 3.0V					
	Extended devices	.920	1.5	mA	+125°C						
	All devices	1.8	2.3	mA	-40°C						
		1.6	2.2	mA	+25°C	VDD = 4.0V					
		1.3	2.2	mA	+85°C						
	All devices	3.0	4.2	mA	-40°C		(HS Oscillator)				
		2.5	4.0	mA	+25°C	Vpp = 5.0V					
		2.5	4.0	mA	+85°C	VDD = 5.0V					
	Extended devices	3.0	5.0	mA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.4 DC Characteristics: PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial)

DC CH	ARACT	ERISTICS	Standard Operation Operating temper Operating voltage	t ing Co r ature VDD ra	nditions (-40°C ≤ -40°C ≤ inge as de	s (unless otherwise stated) $C \leq TA \leq +85^{\circ}C$ for industrial $C \leq TA \leq +125^{\circ}C$ for extended described in				
			Section 18.1 "DC Characteristics".							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	VIL	Input Low Voltage								
		I/O ports:								
D030		with TTL buffer	Vss	_	0.15 Vdd	V	For entire VDD range			
D030A			Vss		0.8V	V	$4.5V \le VDD \le 5.5V$			
D031		with Schmitt Trigger buffer	Vss	_	0.2 Vdd	V				
D032		MCLR, OSC1 (in RC mode)	Vss		0.2 Vdd	V				
D033		OSC1 (in XT and LP modes)	Vss		0.3V	V	(Note 1)			
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V				
		Ports RC3 and RC4:		—						
D034		with Schmitt Trigger buffer	Vss	—	0.3 Vdd	V	For entire VDD range			
D034A		with SMBus	-0.5	—	0.6	V	For VDD = 4.5 to 5.5V			
	Viн	Input High Voltage								
		I/O ports:		—						
D040		with TTL buffer	2.0		Vdd	V	$4.5V \le V\text{DD} \le 5.5V$			
D040A			0.25 VDD + 0.8V	—	Vdd	V	For entire VDD range			
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range			
D042		MCLR	0.8 Vdd	—	Vdd	V				
D042A		OSC1 (in XT and LP modes)	1.6V	—	Vdd	V	(Note 1)			
		OSC1 (in HS mode)	0.7 Vdd	—	Vdd	V				
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V				
		Ports RC3 and RC4:								
D044		with Schmitt Trigger buffer	0.7 Vdd		Vdd	V	For entire VDD range			
D044A		with SMBus	1.4	—	5.5	V	For VDD = 4.5 to 5.5V			
D070	Ipurb	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS, -40°C TO +85°C			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X7 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

*

PIC16F7X7

FIGURE 18-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABI F 18-7.	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

40*	Тт0Н	T0CKI High Pulse		Characteristic					
		T0CKI High Pulse Width		No prescaler	0.5 TCY + 20	—		ns	Must also meet parameter 42
				With prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low Pulse Width		No prescaler	0.5 TCY + 20	_	_	ns	Must also meet parameter 42
				With prescaler	10	-	_	ns	
42*	TT0P	T0CKI Period		No prescaler	Tcy + 40	_	_	ns	
				With prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)
45*	TT1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 Tcy + 20			ns	Must also meet parameter 47
			Synchronous, Prescaler = 2, 4, 8	PIC16F7X7	15			ns	
				PIC16LF7X7	25			ns	
			Asynchronous	PIC16F7X7	30	_		ns	
				PIC16LF7X7	50			ns	
46*	TT1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5 Tcy + 20			ns	Must also meet
			Synchronous, Prescaler = 2, 4, 8	PIC16F7X7	15			ns	parameter 47
				PIC16LF7X7	25	_		ns	
			Asynchronous	PIC16F7X7	30			ns	
				PIC16LF7X7	50			ns	
47*	TT1P	1P T1CKI Input Period	Synchronous	PIC16F7X7	Greater of: 30 or <u>Tcʏ + 40</u> N			ns	N = prescale value (1, 2, 4, 8)
				PIC16LF7X7	Greater of: 50 or <u>Tcʏ + 40</u> N	—		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16F7X7	60			ns	
				PIC16LF7X7	100	_		ns	
	F⊤1	T1 Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)				—	200	kHz	
48	TCKEZTMR1	Delay from Extern	2 Tosc	—	7 Tosc	_			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-15: △IPD WDT, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)

Example

20.0 PACKAGING INFORMATION

20.1 Package Marking Information

28-Lead SPDIP (.300")

