

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f767-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 and CCP3 peripheral interrupts.

-n = Value at POR

REGISTER 2-6:	PIE2: PEF	RIPHERAL	INTERRU	PT ENABLE	E REGISTI	ER 2 (ADD	RESS 8DI	ו)
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	OSFIE	CMIE	LVDIE	—	BCLIE		CCP3IE	CCP2IE
	bit 7							bit 0
bit 7	OSFIE: Os	cillator Fail I	nterrupt Ena	ble bit				
	1 = Enable 0 = Disable	•						
bit 6	CMIE: Con	nparator Inte	rrupt Enable	e bit				
	1 = Enable 0 = Disable							
bit 5	LVDIE: Lov	w-Voltage De	etect Interrup	ot Enable bit				
		terrupt is ena						
bit 4		terrupt is disa						
bit 3	•	ented: Read		hla hit				
DIL 3		s Collision Ir		the SSP whe	on configure	d for $l^2 \cap M$	actor mode	
				the SSP who				
bit 2	Unimplem	ented: Read	l as '0'					
bit 1	CCP3IE: C	CP3 Interrup	ot Enable bit					
		s the CCP3 es the CCP3	•					
bit 0	CCP2IE: C	CP2 Interrup	ot Enable bit					
		s the CCP2 es the CCP2						
	Legend:							
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ADDRESS 0Dh)

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	OSFIF	CMIF	LVDIF	IF — BCLIF — CCP3IF It Flag bit bit bit bit bit ag bit nged (must be cleared in software) bit bit errupt Flag bit en below the specified LVD voltage (must be cleared in ter then the specified LVD voltage Flag bit Flag bit ed in the SSP when configured for I ² C Master mode red bit bit ccurred (must be cleared in software) occurred match occurred (must be cleared in software) e match occurred function the software) bit ccurred (must be cleared in software) function tered function tered bit ccurred (must be cleared in software) function tered function tered bit ccurred (must be cleared in software) function tered function tered cott ccurred (must be cleared in software) function tered function tered cott ccurred (must be cleared in software) function tered function tered cott ccurred (must be cleared in software) function tered function tered	CCP2IF			
	bit 7							bit 0
bit 7	OSFIF: Os	cillator Fail I	nterrupt Flag	ı bit				
	•	n oscillator fa n clock opera		put has char	nged to INT	RC (must be	e cleared in	software)
bit 6	CMIF: Con	nparator Inte	errupt Flag bi	t				
			has changed has not chang		ared in softw	vare)		
bit 5	LVDIF: Lov	w-Voltage De	etect Interrup	ot Flag bit				
							be cleared	in software)
bit 4	Unimplem	ented: Read	d as '0'					
bit 3	BCLIF: Bu	s Collision Ir	nterrupt Flag	bit				
		collision has s collision ha		the SSP whe	n configure	d for I ² C Ma	aster mode	
bit 2	Unimplem	ented: Read	d as '0'					
bit 1	CCP3IF: C	CP3 Interru	pt Flag bit					
		1 register ca	apture occurr capture occu		cleared in s	oftware)		
		1 register co			nust be clea	ared in softw	vare)	
	<u>PWM mod</u> Unused in	_						
bit 0	CCP2IF: C	CP2 Interru	ot Flag bit					
		1 register ca	apture occurr capture occu	•	cleared in s	oftware)		
		1 register co			nust be clea	ared in softw	vare)	
	<u>PWM mod</u> Unused.	<u>e:</u>						
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	· '0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

2.2.2.8 PCON Register

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word register).

REGISTER 2-8: PCON: POWER CONTROL/STATUS REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-1
_	—	—	—	—	SBOREN	POR	BOR
bit 7							bit 0

- bit 7-3 Unimplemented: Read as '0'
- bit 2 **SBOREN**: Software Brown-out Reset Enable bit
 - If BORSEN in Configuration Word 2 is a '1' and BOREN in Configuration Word 1 is '0': 1 = BOR enabled 0 = BOR disabled
- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 **BOR**: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.5.1 **INTRC MODES**

Using the internal oscillator as the clock source can eliminate the need for up to two external oscillator pins, after which it can be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

4.5.2 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory but can be adjusted in the application. This is done by writing to the OSCTUNE register (Register 4-1). The tuning sensitivity is constant throughout the tuning range. The OSCTUNE register has a tuning range of ±12.5%.

When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately $8 * 32 \ \mu s = 256 \ \mu s$); the INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred. Operation of features that depend on the 31.25 kHz INTRC clock source frequency, such as the WDT, Fail-Safe Clock Monitor and peripherals, will also be affected by the change in frequency.

REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER (ADDRESS 90h)

-11 7-1.	COCIONE						,	
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
	bit 7							bit 0
bit 7-6	Unimplem	ented: Read	d as '0'					
bit 5-0	TUN<5:0>:	Frequency	Tuning bits					
	011111 = 	Maximum fro	equency					
	011110 =							
	•							
	•							
	•							
	000001 =							
		Center frequ	iency. Oscilla	ator module	is running a	t the calibra	ted frequend	cy.
	111111 =							
	•							
	•							
	•							
	100000 = I	Minimum fre	quency					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.6.5 CLOCK TRANSITION SEQUENCE

The following are three different sequences for switching the internal RC oscillator frequency:

- Clock before switch: 31.25 kHz (IRCF<2:0> = 000)
 - 1. IRCF bits are modified to an INTOSC/INTOSC postscaler frequency.
 - The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - The IOFS bit is clear to indicate that the clock is unstable and a 4 ms (approx.) delay is started. Time dependent code should wait for IOFS to become set.
 - 5. Switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to INTRC (IRCF<2:0> = 000).
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. Oscillator switchover is complete.

- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to a different INTOSC/ INTOSC postscaler frequency.
 - The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. The IOFS bit is set.
 - 5. Oscillator switchover is complete.
- 4.6.6 OSCILLATOR DELAY UPON POWER-UP, WAKE-UP AND CLOCK SWITCHING

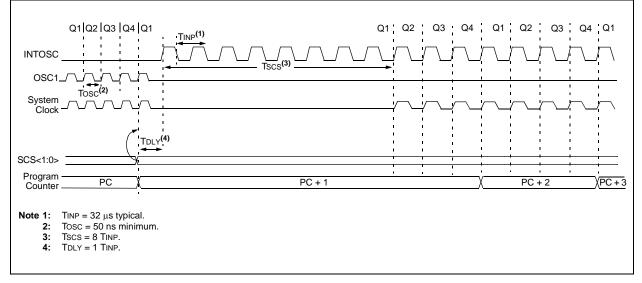
Table 4-3 shows the different delays invoked for various clock switching sequences. It also shows the delays invoked for POR and wake-up.

Clo	ck Switch	Fraguanay	Oscillator Delay	Comments			
From	То	Frequency	Uscillator Delay	Comments			
Sleep/DOP	INTRC T1OSC	31.25 kHz 32.768 kHz	CPU Start-up ⁽¹⁾				
Sleep/POR	INTOSC/INTOSC Postscaler 125 kHz-8 MHz		4 ms (approx.) and CPU Start-up ⁽¹⁾	Following a wake-up from Sleep mode or POR, CPU start-up is invoked to			
INTRC/ Sleep	EC, RC	DC – 20 MHz		allow the CPU to become ready for code execution.			
INTRC (31.25 kHz)	EC, RC	DC – 20 MHz					
Sleep	LP, XT, HS	32.768 kHz-20 MHz	1024 Clock Cycles	Following a change from INTRC, the OST count of 1024 cycles must occur.			
INTRC (31.25 kHz)	INTOSC/INTOSC Postscaler	125 kHz-8 MHz	4 ms (approx.)	Refer to Section 4.6.4 "Modifying the IRCF Bits " for further details.			

TABLE 4-3: OSCILLATOR DELAY EXAMPLES

Note 1: The 5 µs-10 µs start-up delay is based on a 1 MHz system clock.

4.7 Power-Managed Modes


4.7.1 RC_RUN MODE

When SCS bits are configured to run from the INTRC, a clock transition is generated if the system clock is not already using the INTRC. The event will clear the OSTS bit and switch the system clock from the primary system clock (if SCS<1:0> = 00) determined by the value contained in the configuration bits, or from the T1OSC (if SCS<1:0> = 01) to the INTRC clock option and shut-down the primary system clock to conserve power. Clock switching will not occur if the primary system clock is already configured as INTRC.

If the system clock does not come from the INTRC (31.25 kHz) when the SCS bits are changed and the IRCF bits in the OSCCON register are configured for a frequency other than INTRC, the frequency may not be stable immediately. The IOFS bit (OSCCON<2>) will be set when the INTOSC or postscaler frequency is stable, after 4 ms (approx.).

After a clock switch has been executed, the OSTS bit is cleared, indicating a low-power mode and the device does not run from the primary system clock. The internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the INTRC oscillator. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-7).

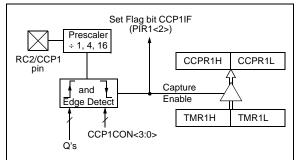
PIC16F7X7

NOTES:

9.4 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following and is configured by CCPxCON<3:0>:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR1<2>), is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

9.4.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to the port can cause a
	capture condition.

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.4.3 SOFTWARE INTERRUPT

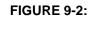
When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit, CCP1IE (PIE1<2>), clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

9.4.4 CCP PRESCALER

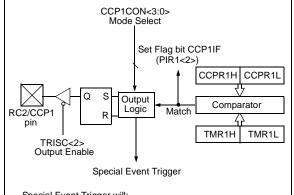
There are four prescaler settings specified by bits, CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS


CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		;value

9.5 Compare Mode


In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

COMPARE MODE OPERATION BLOCK DIAGRAM

Special Event Trigger will:

- clear TMR1H and TMR1L registers
 - NOT set interrupt flag bit, TMR1IF (PIR1<0>)
 - (for CCP2 only) set the GO/DONE bit (ADCON0<2>)

10.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

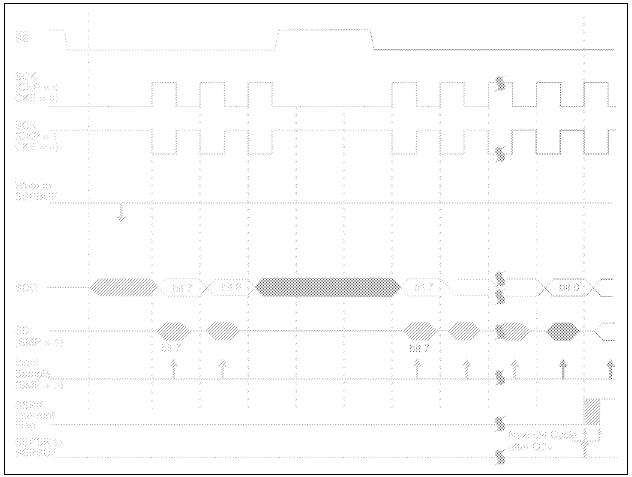
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times, as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

10.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 4h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch


must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 10-4: SLAVE SYNCHRONIZATION WAVEFORM

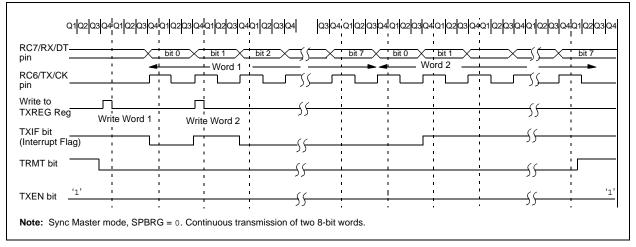
PIC16F7X7

ER 11-2:	RCSTA: R										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Ser	ial Port Ena	ble bit								
	-	oort enabled		RC7/RX/D	Fand RC6/T	X/CK pins a	as serial port	pins)			
bit 6	RX9 : 9-bit	Receive Ena	able bit								
		 1 = Selects 9-bit reception 0 = Selects 8-bit reception 									
bit 5	SREN: Sin	gle Receive	Enable bit								
	<u>Asynchron</u> Don't care.	Asynchronous mode:									
	1 = Enable 0 = Disable	<u>us mode – N</u> s single rece es single rec cleared after	eive	complete.							
	<u>Synchrono</u> Don't care.	us mode – S	<u>Slave:</u>								
bit 4	CREN: Cor	ntinuous Re	ceive Enable	e bit							
		ous mode: s continuou es continuou									
				til enable bi	CREN is cle	eared (CRE	N overrides	SREN)			
bit 3	ADDEN: A	ddress Dete	ect Enable bi	t							
	Asynchron	ous mode 9	-bit (RX9 = 1	<u>.):</u>							
	RSR<	8> is set			upt and load						
				l bytes are r	eceived and	ninth bit ca	n be used a	s parity bit			
bit 2		ming Error t									
	1 = Framin 0 = No frar		be updated	by reading	RCREG regi	ster and red	ceiving next	valid byte)			
bit 1	OERR: OV	errun Error I	pit								
	1 = Overru 0 = No ove		be cleared b	by clearing l	oit CREN)						
bit 0	RX9D: 9th	bit of Receiv	ved Data								
	Can be par	ity bit but m	ust be calcul	lated by use	er firmware.						
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'			
		at POR		t is set	'0' = Bit is	-	,	-			

Baud	Fosc = 8 MHz Baud			F	Fosc = 4 MHz			Fosc = 2 MHz			Fosc = 1 MHz		
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	NA	_	_	0.300	0	207	0.300	0	103	0.300	0	51	
1.2	1.202	+0.16	103	1.202	+0.16	51	1.202	+0.16	25	1.202	+0.16	12	
2.4	2.404	+0.16	51	2.404	+0.16	25	2.404	+0.16	12	2.232	-6.99	6	
9.6	9.615	+0.16	12	8.929	-6.99	6	10.417	+8.51	2	NA	_	_	
19.2	17.857	-6.99	6	20.833	+8.51	2	NA	_	—	NA	—	—	
28.8	31.250	+8.51	3	31.250	+8.51	1	31.250	+8.51	0	NA	_	_	
38.4	41.667	+8.51	2	NA	_	_	NA	—	_	NA	_	_	
57.6	62.500	+8.51	1	62.500	8.51	0	NA	_	_	NA	—	_	

TABLE 11-5: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

TABLE 11-6: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)


Baud	Fosc = 8 MHz			Fosc = 4 MHz			Fosc = 2 MHz			Fosc = 1 MHz		
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)									
0.3	NA	_	_	NA	_	_	NA	_	_	0.300	0	207
1.2	NA	—	—	1.202	+0.16	207	1.202	+0.16	103	1.202	+0.16	51
2.4	2.404	+0.16	207	2.404	+0.16	103	2.404	+0.16	51	2.404	+0.16	25
9.6	9.615	+0.16	51	9.615	+0.16	25	9.615	+0.16	12	8.929	-6.99	6
19.2	19.231	+0.16	25	19.231	+0.16	12	17.857	-6.99	6	20.833	+8.51	2
28.8	29.412	+2.12	16	27.778	-3.55	8	31.250	+8.51	3	31.250	+8.51	1
38.4	38.462	+0.16	12	35.714	-6.99	6	41.667	+8.51	2	NA	_	_
57.6	55.556	-3.55	8	62.500	+8.51	3	62.500	+8.51	1	62.500	+8.51	0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all o Res	ther
0Bh, 8Bh, 10Bh,18Bh	INTCO N	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
19h	TXREG	AUSART	Transmit	Register						0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	e Genera	tor Registe	ər					0000	0000	0000	0000

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

© 2003-2013 Microchip Technology Inc.

15.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
 - Low-Voltage Detect (LVD)
- Interrupts
- Watchdog Timer (WDT)
- Two-Speed Start-up
- Fail-Safe Clock Monitor
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

15.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory locations 2007h and 2008h.

The user will note that address 2007h is beyond the user program memory space which can be accessed only during programming.

16.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 16-1, while the various opcode fields are summarized in Table 16-1.

Table 13-2 lists the instructions recognized by the MPASMTM Assembler. A complete description of each instruction is also available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

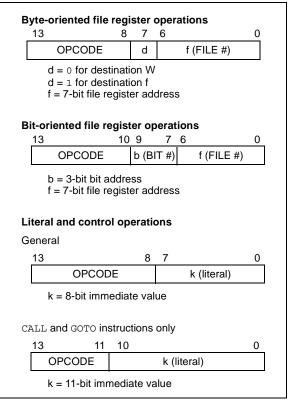
For **bit-oriented** instructions, 'b' represents a bit field designator which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16F7X7 products, do not use
	the OPTION and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


16.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 16-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
PD	Power-Down bit

FIGURE 16-1: GENERAL FORMAT FOR INSTRUCTIONS

17.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

17.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

18.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3 to +6.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +13.5V
Voltage on RA4 with respect to Vss	0 to +12V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $-$ VOH	H) x IOH} + Σ (Vol x IOL)
 Voltage spikes at the MCLR pin may cause latch-up. A series resistor of greater than to pull MCLR to VDD, rather than tying the pin directly to VDD. 	ו 1 k Ω should be used

3: PORTD and PORTE are not implemented on the PIC16F737/767 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

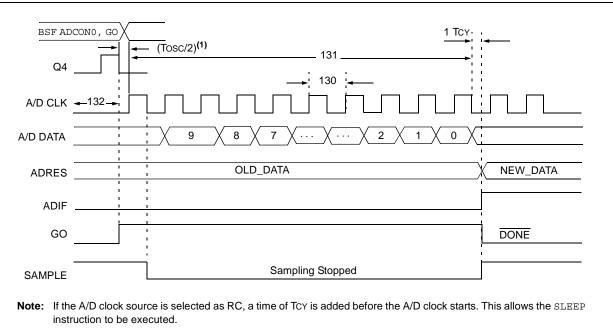
18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
PIC16F7 (Indu											
Param No.	Device	Тур	Max	Units		Conditions					
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	9	20	μA	-40°C						
		7	15	μΑ	+25°C	VDD = 2.0V					
		7	15	μΑ	+85°C						
	PIC16LF7X7	16	30	μA	-40°C						
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 32 kHz				
		14	25	μΑ	+85°C		(LP Oscillator)				
	All devices	32	40	μΑ	-40°C						
		26	35	μΑ	+25°C	VDD = 5.0V					
		26	35	μΑ	+85°C	VDD = 3.0V					
	Extended devices	35	53	μΑ	+125°C						
	PIC16LF7X7	72	95	μA	-40°C						
		76	90	μA	+25°C	VDD = 2.0V					
		76	90	μA	+85°C						
	PIC16LF7X7	138	175	μΑ	-40°C	_					
		136	170	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz				
		136	170	μΑ	+85°C		(RC Oscillator) ⁽³⁾				
	All devices	310	380	μΑ	-40°C						
		290	360	μΑ	+25°C	VDD = 5.0V					
		280	360	μΑ	+85°C	122 - 0.01					
	Extended devices	330	500	μΑ	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

Param No.	Symbol	Characte	Min	Тур†	Max	Units	Conditions	
130	TAD	A/D Clock Period	PIC16F7X7	1.6	_	_	μS	Tosc based, VREF \geq 3.0V
			PIC16LF7X7	3.0	—	_	μS	Tosc based, VREF $\ge 2.0V$
			PIC16F7X7	2.0	4.0	6.0	μS	A/D RC mode
			PIC16LF7X7	3.0	6.0	9.0	μS	A/D RC mode
131	TCNV	Conversion Time (not including S/H time) (Note 1)			—	12	TAD	
132	TACQ	Acquisition Time		(Note 2)	40	_	μS	
				10*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D Clock Start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

TABLE 18-16: A/D CONVERSION REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 12.1 "A/D Acquisition Requirements" for minimum conditions.

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring15	5
Acquisition Requirements15	6
ADRESH Register15	4
Analog Port Pins6	8
Analog-to-Digital Converter15	
Associated Registers16	
Automatic Acquisition Time	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Module	
Conversion Clock	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions 15	
Delays	
Effects of a Reset16	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep16	0
Operation in Power-Managed Modes15	8
Source Impedance15	6
Time Delays15	6
Use of the CCP Trigger16	
Absolute Maximum Ratings	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	0
GO/DONE Bit	1
Addressable Universal Synchronous Asynchronous	4
Receiver Transmitter. See AUSART	
ADRESL Register	4
Application Notes	
AN546 (Using the Analog-to-Digital (A/D)	
AN546 (Using the Analog-to-Digital (A/D) Converter)15	
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 28
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	
AN546 (Using the Analog-to-Digital (A/D) Converter)	693243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (14 13 Asynchronous Receive (14 14 Asynchronous Receive (14 14 </td <td>693243 2808 31</td>	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 141, 14 Setup 14 Asynchronous Reception 14 Asynchronous Reception with Address	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address 141, 14 Setup 14 Asynchronous Reception 141, 14 Asynchronous Reception 14 Asynchronous Reception <td< td=""><td>693 2 4 3 2808 31 2 9</td></td<>	693 2 4 3 2808 31 2 9
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Intersectiver 14 Asynchronous Receiver 14 Asynchronous Receiver 14 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Associated Registers 141, 14 Setup 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Reception with Address 14 Asynchronous Reception Wi	
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Asynchronous Rec	
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Intersectiver 14 Asynchronous Receiver 14 Asynchronous Receiver 14 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Associated Registers 141, 14 Setup 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Reception with Address 14 Asynchronous Reception Wi	

Baud Rates, Asynchronous Mode	
(BRGH = 0)	136
Baud Rates, Asynchronous Mode	
(BRGH = 1)	136
High Baud Rate Select (BRGH Bit)	133
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 0)	137
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 1)	137
Sampling	
Clock Source Select (CSRC Bit)	133
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	134
Receive Enable, 9-Bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 133,	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Reception	
Transmission	144
Synchronous Master Reception	
Associated Registers	146
Setup	
Synchronous Master Transmission	
Associated Registers	145
Setup	
Synchronous Slave Mode	
Reception	149
Transmit	
Synchronous Slave Reception	
Associated Registers	149
Setup	
Synchronous Slave Transmission	
Associated Registers	148
Setup	148
Transmit Data, 9th Bit (TX9D)	133
Transmit Enable (TXEN Bit)	
Transmit Enable, 9-Bit (TX9 Bit)	133
Transmit Shift Register Status (TRMT Bit)	133

В

Banking, Data Memory	15
Baud Rate Generator	119
BF	123
BF Status Flag	123
Block Diagrams	
A/D	155
Analog Input Model	
AUSART Receive	
AUSART Transmit	
Baud Rate Generator	
Capture Mode Operation	89
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	168
Compare	89
Fail-Safe Clock Monitor	189
In-Circuit Serial Programming Connections	192
Interrupt Logic	184
Low-Voltage Detect (LVD)	
Low-Voltage Detect (LVD) with External Input	175
Low-Voltage Detect Characteristics	
MSSP (I ² C Master Mode)	117

PIC16F7X7

Device Differences	
Device Overview	5
Features	5
Direct Addressing	
-	

Е

Electrical Characteristics	205
Errata	4
External Clock Input	

F

Fail-Safe Clock Monitor	169,	189
FSR Register		30

1	
I/O Ports	49
l ² Mode	10
Operation	106
I ² Slave Mode	100
Clock Stretching, 10-bit Receive	
Mode (SEN = 1)	112
Clock Stretching, 10-bit Transmit Mode	
Clock Stretching, 7-bit Receive Mode (SEN = 1)	
Clock Stretching, 7-bit Transmit Mode (SEN = 1)	
I ² C Master Mode	
Clock Arbitration	
Operation	-
Reception	
Repeated Start Condition Timing	
Start Condition Timing Transmission	
I ² C Mode	
ACK Pulse	
Acknowledge Sequence Timing	
Baud Rate Generator	119
Bus Collision	400
Repeated Start Condition	
Start Condition	-
Stop Condition	131
Clock Synchronization and the CKP Bit	113
Effect of a Reset	
General Call Address Support	116
Multi-Master Communication, Bus Collision	
and Arbitration	
Multi-Master Mode	127
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Sleep Operation	
Stop Condition Timing	
I ² C Slave Mode	
Addressing	
Clock Stretching	
Reception	
Transmission	
ID Locations	-, -
In-Circuit Debugger	
In-Circuit Serial Programming	169
In-Circuit Serial Programming (ICSP)	192
INDF Register	
Indirect Addressing	30
FSR Register	15

Instruction Set	
Firmware Instructions 19	
General Format 19	
Opcode Field Descriptions 19	
Read-Modify-Write Operations 19	93
ADDLW 19	95
ADDWF 19	95
ANDLW 19	95
ANDWF 19	95
BCF 19	95
BSF19	95
BTFSC 19	95
BTFSS 19	95
CALL	96
CLRF	96
CLRW 19	96
CLRWDT 19	96
COMF	96
DECF	96
DECFSZ 19	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SLEEP	
SUBWF	
SWAPF	
XORLW	
XORWF	
Summary Table	94
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	
GIE Bit	
INTOIE Bit	-0
INTOIF Bit	
PEIE Bit	
RBIF Bit	
TMR0IE Bit 2	23
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block 3	
INTRC Modes 3	
Internet Address 27	
Interrupt Sources 169, 18	
A/D Conversion Complete 15	55
Interrupt-on-Change (RB7:RB4)5	56
RB0/INT Pin, External 18	
TMR0 Overflow	
TMR0 Overflow	35
TMR0 Overflow	35 48
TMR0 Overflow	35 48