

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f777-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F737 PIC16F767
- PIC16F747 PIC16F777

PIC16F737/767 devices are available only in 28-pin packages, while PIC16F747/777 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X7 family share common architecture with the following differences:

- The PIC16F737 and PIC16F767 have one-half of the total on-chip memory of the PIC16F747 and PIC16F777.
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5.
- The 28-pin devices have 16 interrupts, while the 40/44-pin devices have 17.
- The 28-pin devices have 11 A/D input channels, while the 40/44-pin devices have 14.
- The Parallel Slave Port is implemented only on the 40/44-pin devices.
- Low-Power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.

- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to **Section 15.17** "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.

The available features are summarized in Table 1-1. Block diagrams of the PIC16F737/767 and PIC16F747/777 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F737	PIC16F747	PIC16F767	PIC16F777
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	368	368	368	368
Interrupts	16	17	16	17
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM Modules	3	3	3	3
Master Serial Communications	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	11 Input Channels	14 Input Channels	11 Input Channels	14 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: PIC16F7X7 DEVICE FEATURES

Pin Name	PDIP SOIC SSOP Pin #	QFN Pin #	l/O/P Type	Buffer Type	Description
					PORTB is a bidirectional I/O port. PORTB can be software
	21	10		TTI /0T(1)	programmed for internal weak pull-up on all inputs.
RB0	21	10	1/0	111/31	Digital I/O
INT			1/0		External interrupt.
AN12			i		Analog input channel 12.
RB1/AN10	22	19		TTL	
RB1		_	I/O		Digital I/O.
AN10			I		Analog input channel 10.
RB2/AN8	23	20		TTL	
RB2			I/O		Digital I/O.
AN8			I		Analog input channel 8.
RB3/CCP2/AN9	24	21		TTL	
RB3			I/O		Digital I/O.
CCP2 ⁽⁴⁾			I/O		CCP2 capture input, compare output, PWM output.
AN9					Analog input channel 9.
RB4/AN11	25	22		TTL	
RB4			1/0		Digital I/O.
ANTI			'		
RB5/AN13/CCP3	26	23	1/0	IIL	Divital 1/0
			1/0		Analog input channel 13
CCP3			1/0		CCP3 capture input, compare output, PWM output.
RB6/PCC	27	24	., C	TTI /ST(2)	
RB6	21	24	1/0	110/01/1	Digital I/O
PGC			I/O		In-Circuit Debugger and ICSP [™] programming clock.
RB7/PGD	28	25		TTL/ST ⁽²⁾	
RB7			I/O		Digital I/O.
PGD			I/O		In-Circuit Debugger and ICSP programming data.
Legend: I = input	() = output		I/O =	= input/output P = power
— = Not used	Т	TL = TTL	input	ST =	= Schmitt Trigger input
Note 1: This buffer is a	Schmitt Tr	rigger inpu	ut when c	onfigured as t	he external interrupt.

TABLE 1-2: PIC16F737 AND PIC16F767 PINOUT DESCRIPTION (CONTINUED)

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

DATA MEMORY MAP FOR PIC16F747 AND THE PIC16F777

Δ	File Address		File Address	File Address		F Ad		
Indirect addr (*)	00h	Indirect addr (*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180	
TMRO	01h	OPTION REG	81h	TMR0	101h	OPTION REG	18	
PCI	02h	PCI	82h	PCL	102h	PCL	18	
	03h		0211 83h	STATUS	103h	STATUS	18	
FSR	04h	ESR	84h	FSR	104h	FSR	184	
PORTA	05h	TRISA	85h	WDTCON	105h		18!	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186	
PORTC	07h	TRISC	87h		107h		187	
PORTD	08h	TRISD	88h		108h		188	
PORTE	09h	TRISE	89h	LVDCON	109h		189	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/	
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18	
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	180	
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18	
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18	
TMR1H	0Fh	OSCCON	8Eh	PMADRH	10Fh		18	
T1CON	10h	OSCTUNE	90h		110h		19	
TMR2	11h	SSPCON2	91h					
T2CON	12h	PR2	92h					
SSPBUF	13h	SSPADD	93h					
SSPCON	14h	SSPSTAT	94h					
CCPR1L	15h	CCPR3L	95h					
CCPR1H	16h	CCPR3H	96h					
CCP1CON	17h	CCP3CON	97h	General		General		
RCSTA	18h	TXSTA	98h	Register		Register		
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes		
RCREG	1Ah		9Ah					
CCPR2L	1Bh	ADCON2	9Bh					
CCPR2H	1Ch	CMCON	9Ch					
CCP2CON	1Dh	CVRCON	9Dh					
ADRESH	1Eh	ADRESL	9Eh					
ADCON0	1Fh	ADCON1	9Fh		11Fh		19	
	20h	General	A0h	General	120h	General	1A	
		Purpose		Purpose		Purpose		
General		Register 80 Bytes		Register 80 Bytes		Register		
Register		UU Dytes	FFb	00 Dytes	16Fb	00 Dytes	1=	
			F0h		170h		1F(
SO DYIES		Accesses		Accesses		Accesses		
		70h-7Fh		70h-7Fh		70h-7Fh		
	7Fb		FFh		17Fh		1F	
		Bank 1		Bank 2		Bank 3		

2.2.2.8 PCON Register

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word register).

REGISTER 2-8: PCON: POWER CONTROL/STATUS REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-1
—	—	—	—	—	SBOREN	POR	BOR
bit 7							bit 0

- bit 7-3 Unimplemented: Read as '0'
- bit 2 SBOREN: Software Brown-out Reset Enable bit
 - If BORSEN in Configuration Word 2 is a '1' and BOREN in Configuration Word 1 is '0': 1 = BOR enabled 0 = BOR disabled
- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 **BOR**: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.6 Parallel Slave Port

The Parallel Slave Port (PSP) is not implemented on the PIC16F737 or PIC16F767.

PORTD operates as an 8-bit wide Parallel Slave Port or microprocessor port when control bit, PSPMODE (TRISE<4>), is set. In Slave mode, it is asynchronously readable and writable by an external system using the read control input pin RE0/RD/AN5, the write control input pin RE1/WR/AN6 and the chip select control input pin RE2/CS/AN7.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (i.e., set). The A/D port configuration bits, PCFG3:PCFG0 (ADCON1<3:0>), must be set to configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data output (external reads) and one for data input (external writes). The firmware writes 8-bit data to the PORTD output data latch and reads data from the PORTD input data latch (note that they have the same address). In this mode, the TRISD register is ignored since the external device is controlling the direction of data flow.

An external write to the PSP occurs when the \overline{CS} and \overline{WR} lines are both detected low. Firmware can read the actual data on the PORTD pins during this time. When either the \overline{CS} or \overline{WR} lines become high (level triggered), the data on the PORTD pins is latched and the Input Buffer Full (IBF) status flag bit (TRISE<7>) and interrupt flag bit, PSPIF (PIR1<7>), are set on the Q4 clock cycle following the next Q2 cycle to signal the write is complete (Figure 5-21). Firmware clears the IBF flag by reading the latched PORTD data and clears the PSPIF bit.

The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if an external write to the PSP occurs while the IBF flag is set from a previous external write. The previous PORTD data is overwritten with the new data. IBOV is cleared by reading PORTD and clearing IBOV.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are detected low. The data in the PORTD output latch is output to the PORTD pins. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 5-22), indicating that the PORTD latch is being read or has been read by the external bus. If firmware writes new data to the output latch during this time, it is immediately output to the PORTD pins but OBF will remain cleared.

When either the \overline{CS} or \overline{RD} pins are detected high, the PORTD outputs are disabled and the interrupt flag bit PSPIF is set on the Q4 clock cycle following the next Q2 cycle, indicating that the read is complete. OBF remains low until firmware writes new data to PORTD.

When not in PSP mode, the IBF and OBF bits are held clear. Flag bit IBOV remains unchanged. The PSPIF bit must be cleared by the user in firmware; the interrupt can be disabled by clearing the interrupt enable bit, PSPIE (PIE1<7>).

FIGURE 5-20: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

FIGURE 5-22: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
08h	PORTD	Port Data	Latch wh		xxxx xxxx	uuuu uuuu					
09h	PORTE	_		_	_	RE3	RE2	RE1	RE0	x000	x000
89h	TRISE	IBF	OBF	IBOV	PSPMODE	(2)	PORTE D	Data Direct	ion bits	0000 1111	0000 1111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, --- = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767; always maintain these bits clear.

2: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

© 2003-2013 Microchip Technology Inc.

NOTES:

7.5 Timer1 Operation in Asynchronous Counter Mode

If control bit, T1SYNC (T1CON<2>), is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow that will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

7.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the Timer registers while the register is incrementing. This may produce an unpredictable value in the Timer register.

Reading the 16-bit value requires some care. The example codes provided in Example 7-1 and Example 7-2 demonstrate how to write to and read Timer1 while it is running in Asynchronous mode.

EXAMPLE 7-1: WRITING A 16-BIT FREE RUNNING TIMER

abled
; Clear Low byte, Ensures no rollover into TMR1H
; Value to load into TMR1H
; Write High byte
; Value to load into TMR1L
; Write Low byte
t (if required)
; Continue with your code

EXAMPLE 7-2: READING A 16-BIT FREE RUNNING TIMER

. All interments are	diashlad	
; All incertupts are	disabled	
MOVF TMR1H, W	; Read high byte	
MOVWF TMPH		
MOVF TMR1L, W	; Read low byte	
MOVWF TMPL		
MOVF TMR1H, W	; Read high byte	
SUBWF TMPH, W	; Sub 1st read with 2nd read	
BTFSC STATUS, Z	; Is result = 0	
GOTO CONTINUE	; Good 16-bit read	
; TMR1L may have roll	ed over between the read of the high and low bytes.	
; Reading the high an	d low bytes now will read a good value.	
MOVF TMR1H, W	; Read high byte	
MOVWF TMPH		
MOVF TMR1L, W	; Read low byte	
MOVWF TMPL	; Re-enable the Interrupt (if required)	
CONTINUE	; Continue with your code	

10.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 10-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 10-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 10-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

When setting up an Asynchronous Transmission, follow these steps:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 0000
19h	TXREG	AUSART '	Transmit	Data Regi	ister					0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

11.4 AUSART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit, CSRC (TXSTA<7>).

11.4.1 AUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	x000 0000	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART	Transmit I	Data Regis	ster					0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

TABLE 11-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

15.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
 - Low-Voltage Detect (LVD)
- Interrupts
- Watchdog Timer (WDT)
- Two-Speed Start-up
- Fail-Safe Clock Monitor
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT) which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

15.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory locations 2007h and 2008h.

The user will note that address 2007h is beyond the user program memory space which can be accessed only during programming.

15.10.1 REFERENCE VOLTAGE SET POINT

The internal reference voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low-voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low-voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 15-6.

15.10.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

15.11 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

15.12 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.

Note: If the LVD is enabled and the BOR module is not enabled, the band gap will require a start-up time of no more than 50 μs before the band gap reference is stable. Before enabling the LVD interrupt, the user should ensure that the band gap reference voltage is stable by monitoring the IRVST bit in the LVDCON register. The LVD could cause erroneous interrupts before the band gap is stable.

15.13 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs; then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS); when the OST ends, the device comes out of Reset.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X7 device operating in parallel.

Table 15-3 shows the Reset conditions for the Status, PCON and PC registers, while Table 15-4 shows the Reset conditions for all the registers.

15.14 Power Control/Status Register (PCON)

The Power Control/Status register, PCON, has two bits to indicate the type of Reset that last occurred.

Bit 0 is Brown-out Reset status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit 1 is Power-on Reset Status bit, POR. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indu	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F7: (Indu	37/747/767/777 strial, Extended)	Standa Operati	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Typ Max Units Conditions									
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	8	20	μΑ	-40°C						
		7	15	μA	+25°C	VDD = 2.0V					
		7	15	μA	+85°C						
	PIC16LF7X7	16	30	μΑ	-40°C						
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 31.25 kHz				
		14	25	μA	+85°C		Internal RC Oscillator)				
	All devices	32	40	μΑ	-40°C		,				
		29	35	μΑ	+25°C						
		29	35	μΑ	+85°C	VDD = 3.0V					
	Extended devices	35	45	μΑ	+125°C						
	PIC16LF7X7	132	160	μΑ	-40°C						
		126	155	μΑ	+25°C	VDD = 2.0V					
		126	155	μΑ	+85°C						
	PIC16LF7X7	260	310	μΑ	-40°C		Fosc = 1 MHz				
		230	300	μΑ	+25°C	VDD = 3.0V					
		230	300	μΑ	+85°C		Internal RC Oscillator)				
	All devices	560	690	μΑ	-40°C						
		500	650	μΑ	+25°C						
		500	650	μΑ	+85°C	VDD = 3.0V					
	Extended devices	570	710	μΑ	+125°C						
	PIC16LF7X7	310	420	μΑ	-40°C	-					
		300	410	μΑ	+25°C	VDD = 2.0V					
		300	410	μΑ	+85°C						
	PIC16LF7X7	550	650	μΑ	-40°C						
		530	620	μΑ	+25°C	VDD = 3.0V	FOSC = 4 MHz				
		530	620	μΑ	+85°C		Internal RC Oscillator)				
	All devices	1.2	1.5	mA	-40°C						
		1.1	1.4	mA	+25°C	Vpp = 5 0V					
		1.1	1.4	mA	+85°C	VDD = 0.0V					
	Extended devices	1.3	1.6	mA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 19-23: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B