

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f777-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.5 PIR1 Register

bit 5

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	
bit 7							bit 0	

- bit 7 **PSPIF:** Parallel Slave Port Read/Write Interrupt Flag bit⁽¹⁾
 - 1 = A read or a write operation has taken place (must be cleared in software)
 - 0 =No read or write has occurred

Note: PSPIF is reserved on 28-pin devices; always maintain this bit clear.

- bit 6 ADIF: A/D Converter Interrupt Flag bit
 - 1 = An A/D conversion is completed (must be cleared in software)
 - 0 = The A/D conversion is not complete
 - RCIF: AUSART Receive Interrupt Flag bit
 - 1 = The AUSART receive buffer is full
 - 0 = The AUSART receive buffer is empty
- bit 4 **TXIF**: AUSART Transmit Interrupt Flag bit
 - 1 = The AUSART transmit buffer is empty
 - 0 = The AUSART transmit buffer is full
- bit 3 **SSPIF**: Synchronous Serial Port (SSP) Interrupt Flag bit
 - 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI:
 - A transmission/reception has taken place.
 - I²C Slave:
 - A transmission/reception has taken place.
 - I²C Master:

A transmission/reception has taken place. The initiated Start condition was completed by the SSP module. The initiated Stop condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A Start condition occurred while the SSP module was Idle (multi-master system). A Stop condition occurred while the SSP module was Idle (multi-master system).

- 0 = No SSP interrupt condition has occurred
- bit 2 **CCP1IF**: CCP1 Interrupt Flag bit
 - Capture mode:
 - 1 = A TMR1 register capture occurred (must be cleared in software)
 - 0 = No TMR1 register capture occurred
 - Compare mode:
 - 1 = A TMR1 register compare match occurred (must be cleared in software)
 - 0 = No TMR1 register compare match occurred
 - PWM mode:
 - Unused in this mode.
- bit 1 **TMR2IF**: TMR2 to PR2 Match Interrupt Flag bit
 - 1 = TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred
- bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit
 - 1 = TMR1 register overflowed (must be cleared in software)
 - 0 = TMR1 register did not overflow

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 and CCP3 peripheral interrupts.

-n = Value at POR

REGISTER 2-6:	PIE2: PEF	RIPHERAL	INTERRU	PT ENABLE	E REGISTI	ER 2 (ADD	RESS 8DI	ו)				
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
	OSFIE	CMIE LVDIE — BCLIE — CCP3IE C					CCP2IE					
	bit 7											
bit 7	OSFIE: Os	OSFIE: Oscillator Fail Interrupt Enable bit										
		1 = Enabled 0 = Disabled										
bit 6	CMIE: Con	CMIE: Comparator Interrupt Enable bit										
		1 = Enabled 0 = Disabled										
bit 5	LVDIE: Low-Voltage Detect Interrupt Enable bit											
		terrupt is ena										
bit 4	 0 = LVD interrupt is disabled Unimplemented: Read as '0' BCLIE: Bus Collision Interrupt Enable bit 											
bit 3												
DIL 3				the SSP whe	on configure	d for $l^2 \cap M$	actor mode					
				the SSP who								
bit 2	Unimplemented: Read as '0'											
bit 1	CCP3IE: C	CP3 Interrup	ot Enable bit									
	 1 = Enables the CCP3 interrupt 0 = Disables the CCP3 interrupt 											
bit 0	CCP2IE: C	CP2 Interrup	ot Enable bit									
	1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt											
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

4.7.4 EXITING SLEEP WITH AN INTERRUPT

Any interrupt, such as WDT or INTO, will cause the part to leave the Sleep mode.

The SCS bits are unaffected by a SLEEP command and are the same before and after entering and leaving Sleep. The clock source used after an exit from Sleep is determined by the SCS bits.

4.7.4.1 Sequence of Events

If SCS<1:0> = 00:

- 1. The device is held in Sleep until the CPU start-up time-out is complete.
- If the primary system clock is configured as an 2. external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in Sleep unless Two-Speed Start-up is enabled. The OST and CPU start-up timers run in parallel. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for details on Two-Speed Start-up.
- 3. After both the CPU start-up timer and the Oscillator Start-up Timer have timed out, the device will exit Sleep and begin instruction execution with the primary clock defined by the FOSC bits.

If SCS < 1:0 > = 01 or 10:

- The device is held in Sleep until the CPU start-up 1. time-out is complete.
- 2. After the CPU start-up timer has timed out, the device will exit Sleep and begin instruction execution with the selected oscillator mode.
 - Note: If a user changes SCS<1:0> just before entering Sleep mode, the system clock used when exiting Sleep mode could be different than the system clock used when entering Sleep mode. As an example, if SCS<1:0> = 01, T1OSC is the system clock and the following instructions are executed: BCF

SLEEP

OSCCON, SCS0

then a clock change event is executed. If the primary oscillator is XT, LP or HS, the core will continue to run off T1OSC and execute the SLEEP command.

When Sleep is exited, the part will resume operation with the primary oscillator after the OST has expired.

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit 0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit 1	ST	Input/output port pin or Timer1 oscillator input or Capture 2 input/ Compare 2 output/PWM 2 output.
RC2/CCP1	bit 2	ST	Input/output port pin or Capture 1 input/Compare 1 output/PWM 1 output.
RC3/SCK/SCL	bit 3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C^{TM} modes.
RC4/SDI/SDA	bit 4	ST	RC4 can also be the SPI data in (SPI mode) or data I/O (I^2 C mode).
RC5/SDO	bit 5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit 6	ST	Input/output port pin or AUSART asynchronous transmit or synchronous clock.
RC7/RX/DT	bit 7	ST	Input/output port pin or AUSART asynchronous receive or synchronous data.

TABLE 5-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	ORTC Data Direction Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 7.6** "**Timer1 Oscillator**") gives users the option to include RTC functionality in their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

RTCinit	BANKSEL MOVLW MOVWF CLRF MOVLW MOVWF CLRF CLRF MOVLW MOVWF	TMR1H 0x80 TMR1H TMR1L b'00001111' T1CON secs mins .12 hours	; Preload TMR1 register pair ; for 1 second overflow ; Configure for external clock, ; Asynchronous operation, external oscillator ; Initialize timekeeping registers
	BANKSEL BSF	PIE1 PIE1, TMR1IE	; Enable Timer1 interrupt
RTCisr	RETURN BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF	mins, f	; Increment minutes
	MOVF	mins, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

EXAMPLE 7-3: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

10.4.12 ACKNOWLEDGE SEQUENCE TIMING

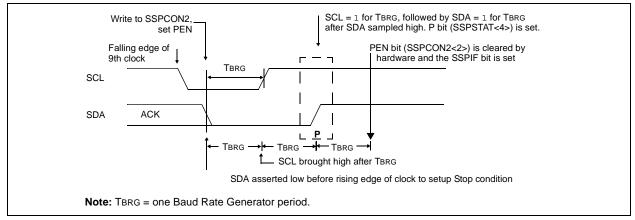
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 10-23).

10.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


10.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 10-24).


10.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 10-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 10-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

PIC16F7X7

NOTES:

15.17.4.2 FSCM and the Watchdog Timer

When a clock failure is detected, SCS<1:0> will be forced to '10' which will reset the WDT (if enabled).

15.17.4.3 POR or Wake from Sleep

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary system clock is EC, RC or INTRC modes, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the system clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

15.18 Power-Down Mode (Sleep)

Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (Status<3>) is cleared, the TO (Status<4>) bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

15.18.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a peripheral interrupt.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the Status register can be used to determine the cause of the device Reset. The PD bit, which is <u>set</u> on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 4. SSP (Start/Stop) bit detect interrupt.
- 5. SSP transmit or receive in Slave mode (SPI/I²C).
- 6. A/D conversion (when A/D clock source is RC).
- 7. EEPROM write operation completion.
- 8. Comparator output changes state.
- 9. AUSART RX or TX (Synchronous Slave mode).

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

TABLE 10-2: PICTOF/X/INSTRUCTION SET	TABLE 16-2:	PIC16F7X7 INSTRUCTION SET
--------------------------------------	-------------	---------------------------

Mnem	onic,	Description	Cycles		14-Bit	Opcode)	Status	Notes
Opera	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIS		RATION	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:	When an	I/O register is modified as a function of itself (e.g	., MOVF P	ORTB,	1), the	value u	used wil	l be that val	ue

present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023).

17.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

17.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

17.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

	7 37/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
	37/747/767/777 Istrial, Extended)										
Param No.	Device	Тур	Max	ax Units Conditions							
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	9	20	μA	-40°C						
		7	15	μA	+25°C	VDD = 2.0V					
		7	15	μA	+85°C						
	PIC16LF7X7	16	30	μA	-40°C						
		14	25	μA	+25°C	VDD = 3.0V	Fosc = 32 kHz				
		14	25	μA	+85°C		(LP Oscillator)				
	All devices	32	40	μA	-40°C						
		26	35	μA	+25°C	VDD = 5.0V					
		26	35	μA	+85°C	VDD = 3.0V					
	Extended devices	35	53	μA	+125°C						
	PIC16LF7X7	72	95	μA	-40°C						
		76	90	μA	+25°C	VDD = 2.0V					
		76	90	μA	+85°C						
	PIC16LF7X7	138	175	μA	-40°C						
		136	170	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz				
		136	170	μΑ	+85°C		(RC Oscillator) ⁽³⁾				
	All devices	310	380	μΑ							
		290	360	μΑ	+25°C	VDD = 5.0V					
		280	360	μΑ	+85°C						
	Extended devices	330	500	μA	+125°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

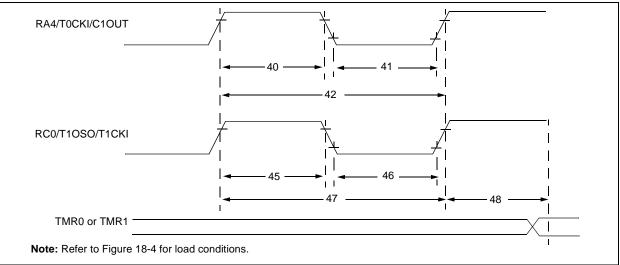
PIC16LF7 (Indus	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
	37/747/767/777 strial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Тур	Max	ax Units Conditions						
	Module Differential Currer	nts (∆lw	от, ∆ іво	R, ∆İLVD	, Δ IOSCB, Δ IAD)					
D025	Timer1 Oscillator	1.7	2.3	μA	-40°C					
(∆IOSCB)		1.8	2.3	μΑ	+25°C	VDD = 2.0V	32 kHz on Timer1			
		2.0	2.3	μΑ	+85°C					
		2.2	3.8	μΑ	-40°C	VDD = 3.0V				
		2.6	3.8	μΑ	+25°C					
		2.9	3.8	μA	+85°C					
		3.0	6.0	μΑ	-40°C					
		3.2	6.0	μΑ	+25°C	VDD = 5.0V				
		3.4	7.0	μΑ	+85°C					
D026	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V				
(∆IAD)		0.001	2.0	μΑ	-40°C to +85°C	VDD = 3.0V	A/D on, Sleep, not converting			
		0.003	2.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, Sleep, not converting			
	Extended devices	4	8	mA	-40°C to +125°C	VDD = 5.0V				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

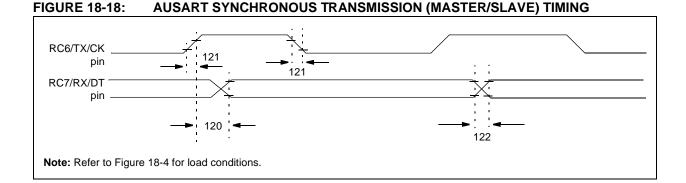

PIC16F7X7

FIGURE 18-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Тт0Н	T0CKI High Pulse	Width	No prescaler	0.5 TCY + 20			ns	Must also meet	
				With prescaler	10	_		ns	parameter 42	
41*	TT0L	T0CKI Low Pulse	Width	0.5 TCY + 20	_		ns	Must also meet		
				With prescaler	10	—	—	ns	parameter 42	
42*	TT0P	T0CKI Period		No prescaler	Tcy + 40	_	_	ns		
				With prescaler	Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)	
45*	T⊤1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 Tcy + 20			ns	Must also meet	
			Synchronous,	PIC16F7X7	15	—	—	ns	parameter 47	
			Prescaler = 2, 4, 8	PIC16LF7X7	25	_		ns		
			Asynchronous	PIC16F7X7	30	_		ns		
				PIC16LF7X7	50	—	—	ns		
46*	TT1L	T1CKI Low Time	Synchronous, Pre	0.5 Tcy + 20	—	—	ns	Must also meet		
			Synchronous,	PIC16F7X7	15	—	—	ns	parameter 47	
			Prescaler = 2, 4, 8	PIC16LF7X7	25	_	_	ns	-	
			Asynchronous	PIC16F7X7	30	-	_	ns		
				PIC16LF7X7	50	_	_	ns		
47*	TT1P	T1CKI Input Period	Synchronous	PIC16F7X7	Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)	
				PIC16LF7X7	Greater of: 50 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16F7X7	60			ns		
				PIC16LF7X7	100	_	_	ns		
	F⊤1	Timer1 Oscillator I (oscillator enabled	DC	_	200	kHz				
48	TCKEZTMR1	Delay from Extern	al Clock Edge to Ti	mer Increment	2 Tosc	_	7 Tosc	—		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

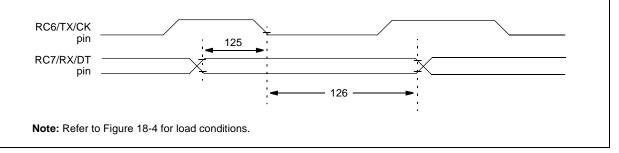


TABLE 18-13: AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
120	TCKH2DTV	<u>SYNC XMIT (MASTER & SLAVE)</u> Clock High to Data Out Valid	PIC16F7X7		_	80	ns	
			PIC16LF7X7	_		100	ns	
121	TCKRF	Clock Out Rise Time and Fall Time	PIC16F7X7	_	_	45	ns	
		(Master mode)	PIC16LF7X7	_	—	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	PIC16F7X7	_		45	ns	
			PIC16LF7X7			50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

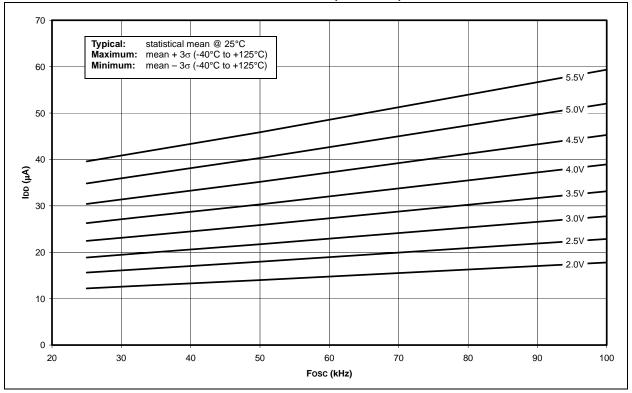
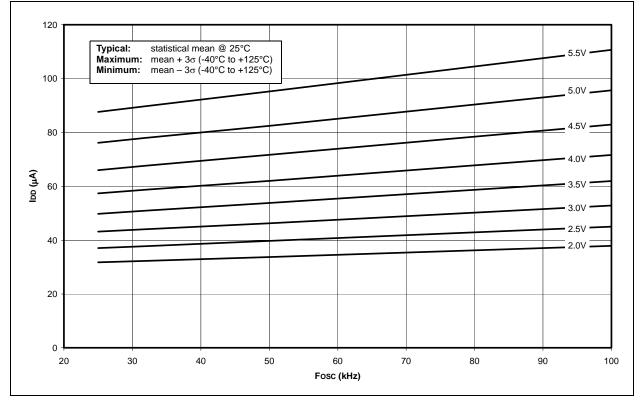

FIGURE 18-19: AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-14: AUSART SYNCHRONOUS RECEIVE REQUIREMENTS


Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE) Data Setup before CK \downarrow (DT setup time)	15	_	_	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	-	-	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



20.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е	.100 BSC		
Top to Seating Plane	А	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring	5
Acquisition Requirements15	6
ADRESH Register	4
Analog Port Pins6	8
Analog-to-Digital Converter15	
Associated Registers16	
Automatic Acquisition Time	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Module	
Conversion Clock	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions	
Delays	
Effects of a Reset16	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep16	0
Operation in Power-Managed Modes	8
Source Impedance15	6
Time Delays	6
Use of the CCP Trigger	
Absolute Maximum Ratings	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	0
GO/DONE Bit	1
Addressable Universal Synchronous Asynchronous	4
Receiver Transmitter. See AUSART	
ADRESL Register	4
Application Notes	
AN546 (Using the Analog-to-Digital (A/D)	
AN546 (Using the Analog-to-Digital (A/D) Converter)15	
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)50	6
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)50	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 28
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 22 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (14 Asynchronous Receive (14 14 Asynchronous Receive (14	693 243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter)	6932432808312
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 55 AN556 (Implementing a Table Read) 22 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address 141, 14 Setup 14 Asynchronous Receiven 14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (14) 141, 14 Setup 14 Asynchronous Reception 14 Asynchronous Reception Mith Address 141	69324328083129
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 56 AN556 (Implementing a Table Read) 22 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 39 Asynchronous Receiver Transmitter 133 Asynchronous Receiver Implementing Receiver 144 Transmitter 133 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 144 Setup 14 Asynchronous Reception 143 Asynchronous Reception 144 Asynchronous Reception 141, 144 Setup 144 Asynchronous Reception 143 Asynchronous Reception 143 Asynchronous Reception with Address 144 Detect Setup 144	693 2 4 3 2808 31 2 99
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 56 AN556 (Implementing a Table Read) 22 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 39 Asynchronous Receiver Transmitter 133 Asynchronous Receiver Transmitter 134 Asynchronous Receiver 144 Transmitter 135 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14 Asynchronous Reception with Address 144 Detect Setup 144 Asynchronous Reception with Address 141, 144 Setup 143 Asynchronous Reception with Address 144 Detect Setup 144 Asynchronous Reception with Address 144	693 2 4 3 2808 31 2 995
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 56 AN556 (Implementing a Table Read) 22 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 39 Asynchronous Receiver Transmitter 133 Asynchronous Receiver Implementing Receiver 144 Transmitter 133 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 144 Setup 14 Asynchronous Reception 143 Asynchronous Reception 144 Asynchronous Reception 141, 144 Setup 144 Asynchronous Reception 143 Asynchronous Reception 143 Asynchronous Reception with Address 144 Detect Setup 144	69324328083129955

Baud Rates, Asynchronous Mode	
(BRGH = 0)	136
Baud Rates, Asynchronous Mode	
(BRGH = 1)	136
High Baud Rate Select (BRGH Bit)	133
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 0)	137
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 1)	137
Sampling	
Clock Source Select (CSRC Bit)	133
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	134
Receive Enable, 9-Bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 133,	
Single Receive Enable (SREN Bit)	134
Synchronous Master Mode	
Reception	
Transmission	144
Synchronous Master Reception	
Associated Registers	146
Setup	
Synchronous Master Transmission	
Associated Registers	145
Setup	144
Synchronous Slave Mode	148
Reception	149
Transmit	148
Synchronous Slave Reception	
Associated Registers	149
Setup	149
Synchronous Slave Transmission	
Associated Registers	148
Setup	148
Transmit Data, 9th Bit (TX9D)	133
Transmit Enable (TXEN Bit)	133
Transmit Enable, 9-Bit (TX9 Bit)	
Transmit Shift Register Status (TRMT Bit)	133

В

Banking, Data Memory	15
Baud Rate Generator	119
BF	123
BF Status Flag	123
Block Diagrams	
A/D	155
Analog Input Model	
AUSART Receive	
AUSART Transmit	
Baud Rate Generator	
Capture Mode Operation	
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare	
Fail-Safe Clock Monitor	189
In-Circuit Serial Programming Connections	192
Interrupt Logic	184
Low-Voltage Detect (LVD)	
Low-Voltage Detect (LVD) with External Input.	175
Low-Voltage Detect Characteristics	
MSSP (I ² C Master Mode)	117

MSSP (I ² C Mode)	,
MSSP (SPI Mode)	
On-Chip Reset Circuit	,
OSC1/CLKI/RA7 Pin	L
OSC2/CLKO/RA6 Pin	
PIC16F737 and PIC16F767	
PIC16F747 and PIC16F7777	
PORTC (Peripheral Output Override)	
RC<2:0>, RC<7:5> Pins	5
PORTC (Peripheral Output Override)	<i>,</i>
RC<4:3> Pins	5
PORTD (In I/O Port Mode)	
PORTD and PORTE (Parallel Slave Port)	
PORTE (In I/O Port Mode)	
PWM Mode	
RA0/AN0:RA1/AN1 Pins	
RA2/AN2/VREF-/CVREF Pin	
RA3/AN3/VREF+ Pin	
RA4/T0CKI/C1OUT Pin	
RA5/AN4/LVDIN/SS/C2OUT Pin	
RB0/INT/AN12 Pin	
RB1/AN10 Pin	
RB2/AN8 Pin	
RB3/CCP2/AN9 Pin	
RB4/AN11 Pin	
RB5/AN13/CCP3 Pin61	
RB6/PGC Pin	
RB7/PGD Pin	
Recommended MCLR Circuit	
System Clock	
Timer0/WDT Prescaler73	
Timer1	
Timer2	
Watchdog Timer (WDT)	
BOR. See Brown-out Reset.	
BRG. See Baud Rate Generator.	
BRGH Bit	5
Brown-out Reset (BOR) 169, 172, 173, 179, 180	
, , , , , , , , , , , , , , , , , , , ,	

С

C Compilers
MPLAB C18202
Capture/Compare/PWM (CCP)87
Capture Mode89
CCP Pin Configuration89
Prescaler
Compare Mode 89
CCP Pin Configuration90
Software Interrupt Mode90
Special Event Trigger90
Special Event Trigger Output
Timer1 Mode Selection90
Interaction of Two CCP Modules87
PWM Mode91
Duty Cycle91
Example Frequencies and Resolutions
Period91
Setup for Operation92
Registers Associated with Capture, Compare and
Timer190
Registers Associated with PWM and Timer292
Timer Resources87
CCP1 Module87
CCP2 Module
CCP3 Module
CCPR1H Register

CCPR1L Register CCPR2H Register	
CCDD2U Degister	
•	
CCPR2L Register	
CCPR3H Register	
CCPR3L Register	
CCPxM<3:0> Bits	
CCPxX and CCPxY Bits	
Clock Sources	
Selection Using OSCCON Register	
Clock Switching	
Modes (table)	
Transition and the Watchdog Timer	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler Assignment from WDT	
to Timer0	
Flash Program Read	32
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Indirect Addressing	
Initializing PORTA	
Loading the SSPBUF (SSPSR) Register	
Reading a 16-bit Free Running Timer	
Saving Status and W Registers in RAM	
Writing a 16-bit Free Running Timer	
Code Protection	
Comparator Module	
Analog Input Connection Considerations	165
Analog Input Connection Considerations	165 165
Analog Input Connection Considerations Associated Registers Configuration	165 165 162
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset	165 165 162 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts	165 165 162 165 164
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation	165 165 162 165 164 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep	165 165 162 165 164 163 165
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs	165 165 162 165 164 163 165 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference	165 162 162 165 164 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal	165 162 165 164 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal	165 165 165 164 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time	165 162 162 165 164 163 163 163 163 163 163 163
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers Configuration	
Analog Input Connection Considerations Associated Registers	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Configuration Bits Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations Crystal and Ceramic Resonators Customer Change Notification Service	
Analog Input Connection Considerations Associated Registers Configuration Effects of a Reset Interrupts Operation Operation During Sleep Outputs Reference External Signal Internal Signal Response Time Comparator Specifications Comparator Voltage Reference Associated Registers Computed GOTO Conversion Considerations Conversion Considerations	

D

Data Memory	15
Bank Select (RP1:RP0 Bits)	15
General Purpose Registers	15
Map for PIC16F737 and PIC16F767	16
Map for PIC16F747 and PIC16F777	17
Special Function Registers	18
DC and AC Characteristics	
Graphs and Tables	235
DC Characteristics	207, 216
Internal RC Accuracy	215
Power-Down and Supply Current	208
Development Support	201

PIC16F7X7

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769386

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.