Microchip Technology - PIC16LF737-I/SO Datasheet

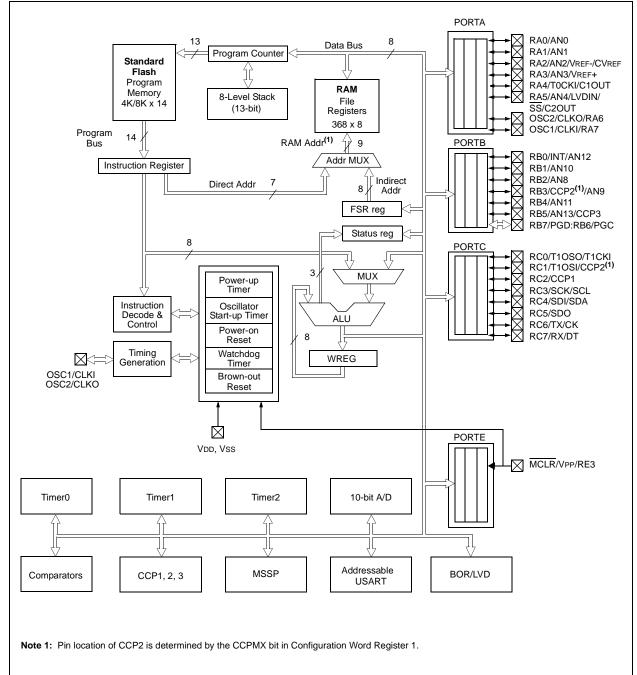
Welcome to E-XFL.COM

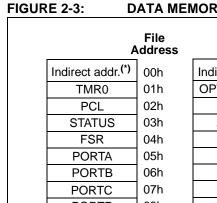
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf737-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X7

DATA MEMORY MAP FOR PIC16F747 AND THE PIC16F777

0h 1h 2h 3h 4h 5h 6h 7h	Indirect addr. ^(*) OPTION_REG PCL STATUS FSR TRISA	80h 81h 82h 83h	Indirect addr. ^(*) TMR0 PCL	100h 101h 102h	Indirect addr. ^(*) OPTION_REG PCL	180h 181h
1h 2h 3h 4h 5h 6h	OPTION_REG PCL STATUS FSR	81h 82h 83h	TMR0 PCL	101h	OPTION_REG	181
2h 3h 4h 5h 6h	PCL STATUS FSR	82h 83h	PCL	102h	PCL	
4h 5h 6h	FSR	83h	0			182
5h 6h	FSR		STATUS	103h	STATUS	183
6h		84h	FSR	104h	FSR	184
		85h	WDTCON	105h		185
7h	TRISB	86h	PORTB	106h	TRISB	186
	TRISC	87h		107h		187
8h	TRISD	88h		108h		188
9h	TRISE	89h	LVDCON	109h		189
Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18C
Dh	PIE2		PMADR	10Dh		18D
Eh	PCON		PMDATH	10Eh		18E
Fh			PMADRH	10Fh		18F
0h	OSCTUNE			110h		190
1h	SSPCON2					
2h	PR2	92h				
3h	SSPADD	93h				
4h	SSPSTAT					
5h	CCPR3L					
6h	CCPR3H				Quant	
7h	CCP3CON					
8h	TXSTA					
9h	SPBRG		16 Bytes		16 Bytes	
Ah						
Bh	ADCON2					
Ch	CMCON	9Ch				
Dh	CVRCON	9Dh				
Eh	ADRESL	9Eh				
Fh	ADCON1	9Fh		11Fh		19F
0h	General Purpose Register 80 Bytes	A0h	General Purpose Register 80 Bytes	120h 16Fh	General Purpose Register 80 Bytes	1A0
		F0h		170h		1F0
	Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh	
Fh	Dev. 1. 4	FFh	Bank 2	17Fh	Book 2	1FF
	Bank 1		Bank 2		Bank 3	
	Eh Fh 0h 1h 2h 3h 5h 6h 7h 8h 6h 7h 8h Ch Eh 6h	Eh PCON Fh OSCCON Oh OSCTUNE 1h SSPCON2 2h PR2 3h SSPADD 4h SSPSTAT 5h CCPR3L 6h CCPR3H 7h CCP3CON 8h TXSTA 9h SPBRG Ah Bh ADCON2 Ch CMCON Dh CVRCON Eh ADRESL Fh ADCON1 Oh General Purpose Register 80 Bytes Accesses 70h-7Fh	DhPIE28DhEhPCON8EhFhOSCCON8Fh0hOSCTUNE90h1hSSPCON291h2hPR292h3hSSPADD93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97h8hTXSTA98h9hSPBRG99hAh9AhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneral Purpose Register 80 BytesEFhFhAccesses 70h-7FhFfh	DhPIE28DhPMADREhPCON8EhPMDATHFhOSCCON8FhPMDATHOhOSCTUNE90h90h1hSSPCON291h92h2hPR292h93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97h8hTXSTA98h9hSPBRG99h16 Bytes92hAh9AhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneralPurposeRegister80 Bytes80 BytesFhAccesses70h-7FhFhFFhFFh	DhPIE28DhPMADR10DhEhPCON8EhPMDATH10EhFhOSCCON8FhPMADRH10Fh0hOSCTUNE90h110h1hSSPCON291h110h2hPR292h110h3hSSPADD93h110h4hSSPSTAT94h10Fh5hCCPR3L95h95h6hCCPR3H96hGeneral7hCCP3CON97hPurpose8hTXSTA98hRegister9hSPBRG99h16 BytesAh9Ah11FhBhADCON29BhChCMCON9ChDhCVRCON9DhEhADRESL9EhFhADCON19Fh0hGeneralPurposeRegister80 Bytes16FhAccesses70h-7Fh16FhFh	DhPIE28DhPMADR10DhEhPCON8EhPMDATH10EhFhOSCCON8FhPMDATH10Eh0hOSCTUNE90h110h1hSSPCON291h2hPR292h3hSSPADD93h4hSSPSTAT94h5hCCPR3L95h6hCCPR3H96h7hCCP3CON97hPurposeRegister8hTXSTA98h9hSPBRG99h16 Bytes16 BytesAh9AhBhADCON29BhChCMCON9Ch9ChDhCVRCON9Dh9DhEhADRESL9Eh9EhFhADCON19FhA0hGeneralPurposeRegister80 Bytes80 BytesEFhAccesses70h-7Fh70h-7FhFfhFhMCCSSAccesses70h-7FhFhMCCSSAccesses70h-7FhFhMCCSSAccesses70h-7FhFfhFhMCCSSAccesses70h-7FhFhTofh-7FhFhFfh

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page	
Bank 1												
80h ⁽⁴⁾	INDF	Addressin	g this locatio	0000 0000	30, 180							
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	22, 180	
82h ⁽⁴⁾	PCL	Program 0	Counter's (PC	C) Least Sigr	nificant Byte					0000 0000	29, 180	
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	21, 180	
84h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter			•	•	xxxx xxxx	30, 180	
85h	TRISA	PORTA D	ata Direction	Register						1111 1111	55, 181	
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	64, 181	
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	66, 181	
88h ⁽⁵⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	67, 181	
89h (5)	TRISE	IBF ⁽⁵⁾	OBF ⁽⁵⁾	IBOV (5)	PSPMODE ⁽⁵⁾	(8)	PORTE Da	ta Direction	bits	0000 1111	69, 181	
	PCLATH	_			Write Buffer for	or the upper	5 bits of the	Program C	Counter	0 0000	23, 180	
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	25, 180	
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	24, 181	
8Dh	PIE2	OSFIE	CMIE	LVDIE		BCLIE	—	CCP3IE	CCP2IE	000- 0-00	26, 181	
8Eh	PCON		—	_	_	_	SBOREN	POR	BOR	lqq	28, 181	
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS ⁽⁷⁾	IOFS	SCS1	SCS0	-000 1000	38, 181	
90h	OSCTUNE	_		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36, 181	
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	105	
92h	PR2		riod Register							1111 1111	86, 181	
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C™ mo	de) Address R	egister				0000 0000	101, 181	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	101, 181	
95h	CCPR3L	Capture/C	ompare/PWI	M Register 3	(LSB)					xxxx xxxx	92	
96h	CCPR3H	Capture/C	ompare/PWI	M Register 3	(MSB)					xxxx xxxx	92	
97h	CCP3CON	_	_	CCP3X	CCP3Y	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	92	
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	145, 181	
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	145, 181	
9Ah	—	Unimplem	ented							—	—	
9Bh	ADCON2	—	_	ACQT2	ACQT1	ACQT0	_	_	—	00 0	154	
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	55, 161	
9Dh	CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	55, 167	
9Eh	ADRESL	A/D Resul	A/D Result Register Low Byte									
9Fh	ADCON1	ADFM	ADCS2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	153, 181	

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> bits, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices (except for RE3), read as '0'.

6: This bit always reads as a '1'.

7: OSCCON<OSTS> bit resets to '0' with dual-speed start-up and LP, HS or HS-PLL selected as the oscillator.

8: RE3 is an input only. The state of the TRISE3 bit has no effect and will always read '1'.

3.3 Reading the Flash Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit, RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction; therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code-Protect

Flash program memory has its own code-protect mechanism. External read and write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal Flash program memory, regardless of the state of the code-protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATH

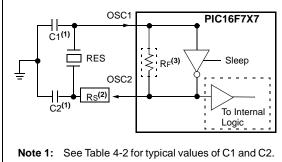

EXAMPLE 3-1: FLASH PROGRAM READ

TABLE 3-1:	REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all c Res	other
10Dh	PMADR	EEPROM A	Address	Regist	er Low E	Byte				xxxx	xxxx	uuuu	uuuu
10Fh	PMADRH	-	—	—	_	EEPRON	Address	Register H	ligh Byte		xxxx	u	uuuu
10Ch	PMDATA	EEPROM D	Data Re	gister L	ow Byte					xxxx	xxxx	uuuu	uuuu
	PMDATH			EEPR	OM Data	a Register	High Byte	9		xx	xxxx	uu	uuuu
18Ch	PMCON1	reserved ⁽¹⁾	_	_	_	_		_	RD	1	0	1	0

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used during Flash access. **Note 1:** This bit always reads as a '1'.

FIGURE 4-2: CERAMIC RESONATOR OPERATION (HS OR XT OSC CONFIGURATION)

- **2:** A series resistor (Rs) may be required.
- 3: RF varies with the resonator chosen (typically between 2 M Ω to 10 M Ω).

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

7	Typical Capacitor Values Used:									
Mode Freq OSC1 OSC2										
XT	455 kHz 2.0 MHz 4.0 MHz	56 pF 47 pF 33 pF	56 pF 47 pF 33 pF							
HS	· · · ·									

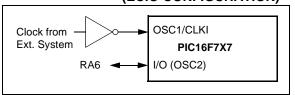
Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.


4.3 External Clock Input

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

4.5.1 **INTRC MODES**

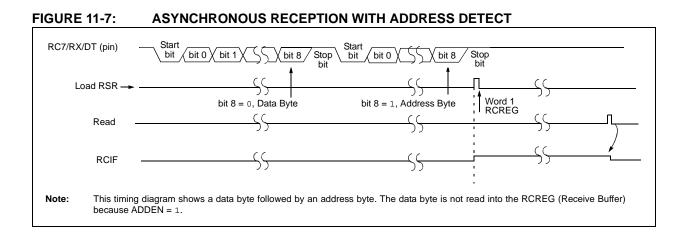
Using the internal oscillator as the clock source can eliminate the need for up to two external oscillator pins, after which it can be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

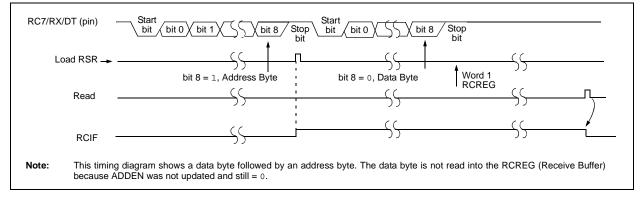
4.5.2 OSCTUNE REGISTER

The internal oscillator's output has been calibrated at the factory but can be adjusted in the application. This is done by writing to the OSCTUNE register (Register 4-1). The tuning sensitivity is constant throughout the tuning range. The OSCTUNE register has a tuning range of ±12.5%.

When the OSCTUNE register is modified, the INTOSC and INTRC frequencies will begin shifting to the new frequency. The INTRC clock will reach the new frequency within 8 clock cycles (approximately $8 * 32 \ \mu s = 256 \ \mu s$); the INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred. Operation of features that depend on the 31.25 kHz INTRC clock source frequency, such as the WDT, Fail-Safe Clock Monitor and peripherals, will also be affected by the change in frequency.


REGISTER 4-1: OSCTUNE: OSCILLATOR TUNING REGISTER (ADDRESS 90h)

-11 7-1.	COCIONE						,					
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0				
	bit 7							bit 0				
bit 7-6	Unimplem	ented: Read	d as '0'									
bit 5-0	TUN<5:0>:	Frequency	Tuning bits									
	011111 = 	Maximum fro	equency									
	011110 =											
	•											
	•											
	•											
	000001 =											
		Center frequ	iency. Oscilla	ator module	is running a	t the calibra	ted frequend	cy.				
	111111 =											
	•											
	•	•										
	•											
	100000 = I	Minimum fre	quency									


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

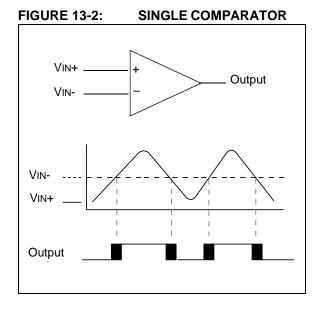
PIC16F7X7

NOTES:

FIGURE 11-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 11-9: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
1Ah	RCREG	AUSART	Receive	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register										0000 0000	0000 0000


Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.**Note 1:**Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 13-2).

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

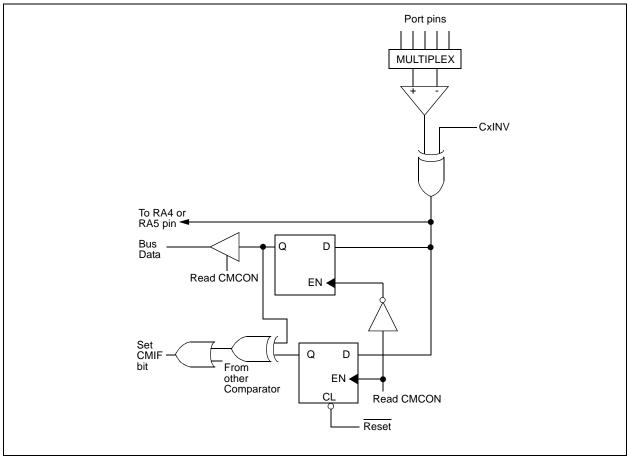
The comparator module also allows the selection of an internally generated voltage reference for the comparators. **Section 14.0 "Comparator Voltage Reference Module"** contains a detailed description of the comparator voltage reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 110 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage, or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0 "Electrical Characteristics").

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.


The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4:>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

PIC16F7X7

13.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2 register) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it ('0'). Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE2 register) and the PEIE bit (INTCON register) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note: If a change in the CMCON register (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR2 register) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

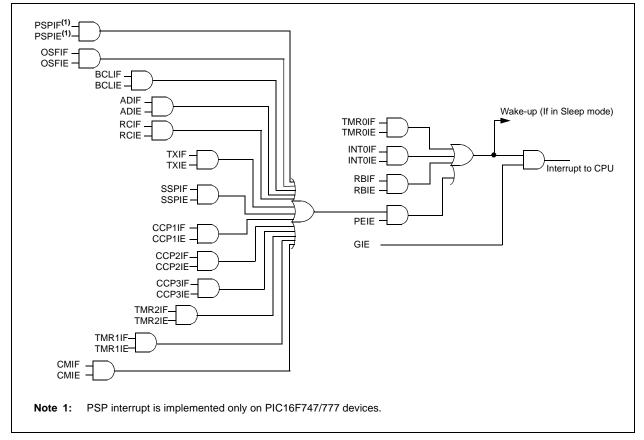
- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

15.15 Interrupts

The PIC16F7X7 has up to 17 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.


A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on Reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the Special Function Register, PIR1. The corresponding interrupt enable bits are contained in Special Function Register, PIE1 and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is serviced, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit, PEIE bit or the GIE bit.

FIGURE 15-11: INTERRUPT LOGIC

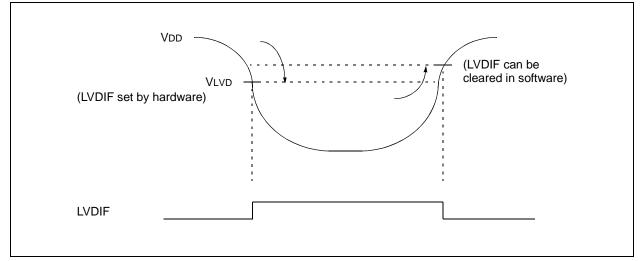
18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF7 (Indus	737/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
	37/747/767/777 strial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Typ Max Units Conditions									
	Module Differential Currer	nts (∆lw	от, ∆ іво	R, ∆İLVD	, Δ IOSCB, Δ IAD)						
D025	Timer1 Oscillator	1.7	2.3	μA	-40°C						
(∆IOSCB)		1.8	2.3	μΑ	+25°C	VDD = 2.0V					
		2.0	2.3	μΑ	+85°C						
		2.2	3.8	μΑ	-40°C	Vdd = 3.0V					
		2.6	3.8	μΑ	+25°C		32 kHz on Timer1				
		2.9	3.8	μA	+85°C						
		3.0	6.0	μΑ	-40°C						
		3.2	6.0	μΑ	+25°C	VDD = 5.0V					
		3.4	7.0	μΑ	+85°C						
D026	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V					
(∆IAD)		0.001	2.0	μΑ	-40°C to +85°C	VDD = 3.0V	A/D on, Sleep, not converting				
		0.003	2.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, Sleep, not converting				
	Extended devices	4	8	mA	-40°C to +125°C	VDD = 5.0V					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 18-3: LOW-VOLTAGE DETECT CHARACTERISTICS

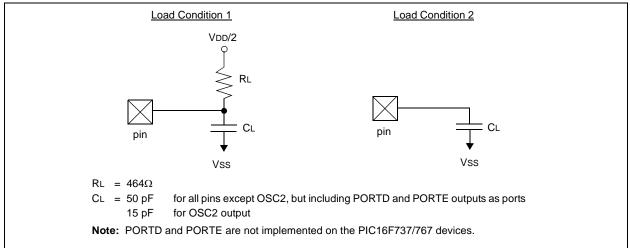
TABLE 18-3: LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

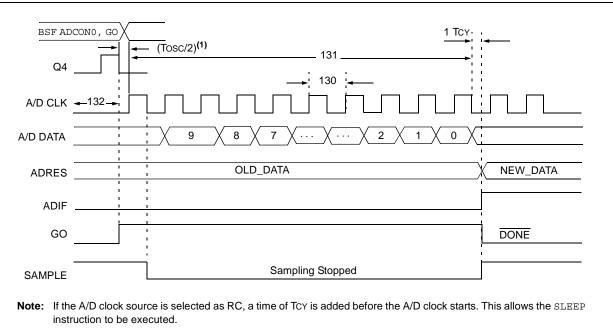
 $\begin{array}{ll} \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C & \leq T A \leq +125^\circ C \mbox{ for extended} \end{array}$

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
D420	Vlvd	D LVD Voltage on VDD Transition High-to-Low	LVDL<3:0> = 0000	N/A	N/A	N/A	V	Reserved
			LVDL<3:0> = 0001	1.96	2.06	2.16	V	T ≥ 25°C
			LVDL<3:0> = 0010	2.16	2.27	2.38	V	T ≥ 25°C
			LVDL<3:0> = 0011	2.35	2.47	2.59	V	$T \ge 25^{\circ}C$
			LVDL<3:0> = 0100	2.43	2.56	2.69	V	
			LVDL<3:0> = 0101	2.64	2.78	2.92	V	
			LVDL<3:0> = 0110	2.75	2.89	3.03	V	
			LVDL<3:0> = 0111	2.95	3.1	3.26	V	
			LVDL<3:0> = 1000	3.24	3.41	3.58	V	
			LVDL<3:0> = 1001	3.43	3.61	3.79	V	
			LVDL<3:0> = 1010	3.53	3.72	3.91	V	
			LVDL<3:0> = 1011	3.72	3.92	4.12	V	
			LVDL<3:0> = 1100	3.92	4.13	4.34	V	
			LVDL<3:0> = 1101	4.11	4.33	4.55	V	
			LVDL<3:0> = 1110	4.41	4.64	4.87	V	

Legend: Shading of rows is to assist in readability of the table.


† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

18.5 Timing Parameter Symbology


The timing parameter symbols have been created using one of the following formats:

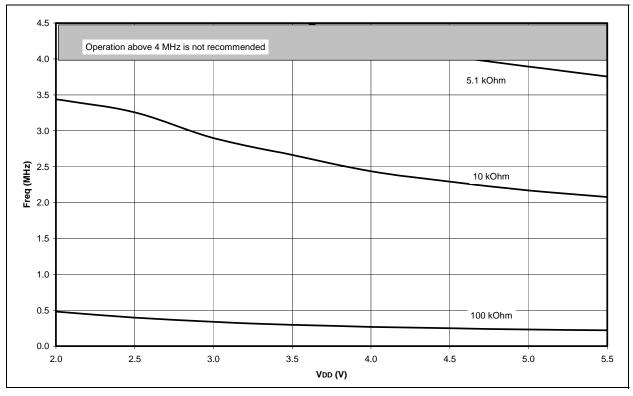
1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:	•	
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (¹² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 18-4: LOAD CONDITIONS

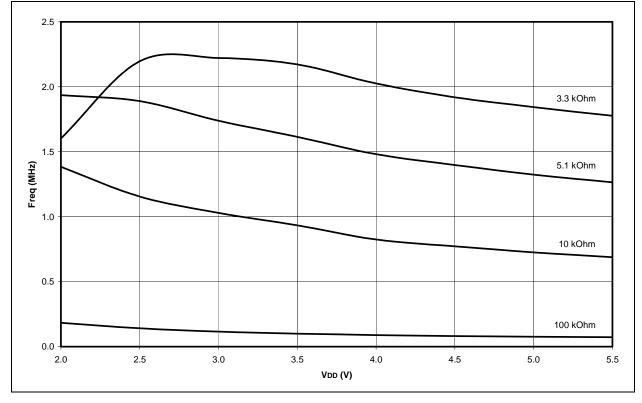
Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions	
130	TAD	A/D Clock Period	PIC16F7X7	1.6	_	_	μS	Tosc based, VREF $\geq 3.0V$	
			PIC16LF7X7	3.0	—	_	μS	Tosc based, VREF $\geq 2.0V$	
			PIC16F7X7	2.0	4.0	6.0	μS	A/D RC mode	
			PIC16LF7X7	3.0	6.0	9.0	μS	A/D RC mode	
131	TCNV	Conversion Time (not including S/H time) (Note 1)			—	12	TAD		
132	32 TACQ Acquisition Time		(Note 2)	40	_	μS			
				10*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).	
134	TGO	Q4 to A/D Clock Start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	

TABLE 18-16: A/D CONVERSION REQUIREMENTS

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 12.1 "A/D Acquisition Requirements" for minimum conditions.

FIGURE 19-12: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, +25°C)


DS30498D-page 240

20.2 Package Details

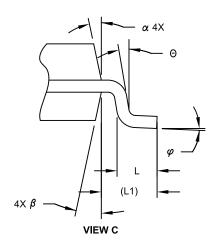
The following sections give the technical details of the packages.

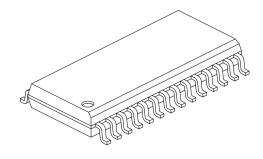
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensio	Dimension Limits		NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	.100 BSC					
Top to Seating Plane	А	_	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	_	.430			

Notes:

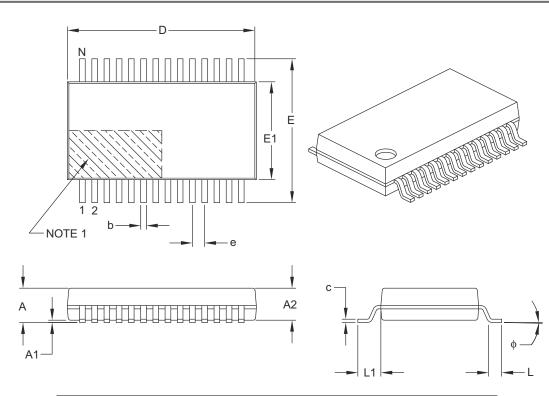

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е	1.27 BSC				
Overall Height	A	-	2.65			
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX			
Number of Pins		28					
Pitch		0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PIC16F7X7

NOTES: