

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf737-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

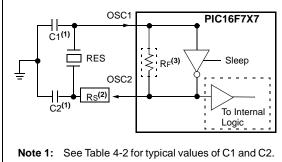
2.2.2.1 Status Register

The Status register contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the Status register as $000u \ uluu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".


Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0
1 = Bank 2	, 3 (100h-1FF		or indirect ac	ldressing)			
RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank	Register Banl 3 (180h-1FFr 2 (100h-17Fh 1 (80h-FFh) 0 (00h-7Fh)	ı)	(used for dire	ect addressi	ng)		
1 = After p	ower-up, CLR		ON OF SLEEP	instruction			
PD : Power 1 = After pe	-Down bit ower-up or by	the CLRWDT					
Z : Zero bit 1 = The res	sult of an arith	imetic or logi	c operation is				
DC : Digit C 1 = A carry	arry/borrow b -out from the	it (ADDWF, AI 4th low-orde	DDLW, SUBL	.w, SUBWF sult occurre		s)	
C: Carry/bo	orrow bit (ADD -out from the ry-out from the	WF, ADDLW Most Signific e Most Signif the polarity	, SUBLW, S cant bit of the ficant bit of th is reversed	SUBWF instrue result occu ne result occu	irred curred ction is exe		adding the
	IRP: Regis 1 = Bank 2 0 = Bank 0 RP1:RP0: 11 = Bank 0 = Bank 0 = Bank 0 = Bank 0 = Bank Each bank TO: Time-co 1 = After po 0 = A WDT PD: Power 1 = After po 0 = By exe Z: Zero bit 1 = The rest $0 = The rest0 = The rest1 = A carry0 = No carry0 = No carry0 = No carry0 = No carry$	IRP: Register Bank Sele 1 = Bank 2, 3 (100h-1FF 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank 11 = Bank 3 (180h-1FFh 10 = Bank 2 (100h-17Fh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLR0 0 = A WDT time-out occ PD: Power-Down bit 1 = After power-up or by 0 = By execution of the second 2: Zero bit 1 = The result of an arithth 0 = The result of an arithth 1 = A carry-out from the 0 = No carry-out from the 1 = A carry-out from the 0 = No carry-out from the 0 = No carry-out from the 1 = No carry-out from the	IRP: Register Bank Select bit (used f 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT 0 = By execution of the SLEEP instru Z: Zero bit 1 = The result of an arithmetic or logi 0 = The result of an arithmetic or logi 1 = A carry-out from the 4th low-orde 0 = No carry-out from the 4th low-orde 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific	<pre>IRP: Register Bank Select bit (used for indirect ac 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for dire 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2: Zero bit 1 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = No carry-out from the 4th low-order bit of the re 0 = No carry-out from the 4th low-order bit of the re 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the</pre>	<pre>IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressi 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. T0: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2. Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF 1 = A carry-out from the 4th low-order bit of the result occurre 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry</pre>	 IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 10 = Bank 1 (80h-FFh) 10 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction Z Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 	<pre>IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2. Zero bit 1 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred</pre>

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-2: CERAMIC RESONATOR OPERATION (HS OR XT OSC CONFIGURATION)

- **2:** A series resistor (Rs) may be required.
- 3: RF varies with the resonator chosen (typically between 2 M Ω to 10 M Ω).

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:						
Mode	Freq	OSC1	OSC2			
XT	455 kHz	56 pF	56 pF			
	2.0 MHz	47 pF	47 pF			
	4.0 MHz	33 pF	33 pF			
HS	8.0 MHz	27 pF	27 pF			
	16.0 MHz	22 pF	22 pF			

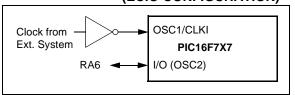
Capacitor values are for design guidance only.

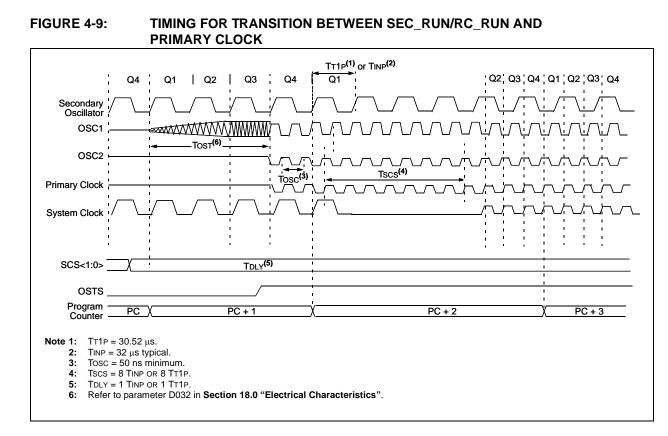
These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.


4.3 External Clock Input

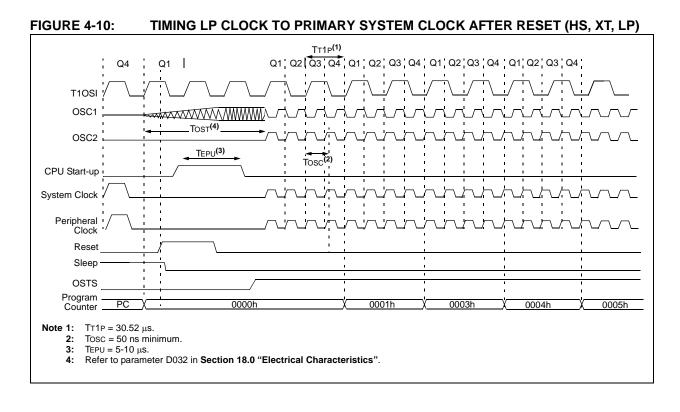

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

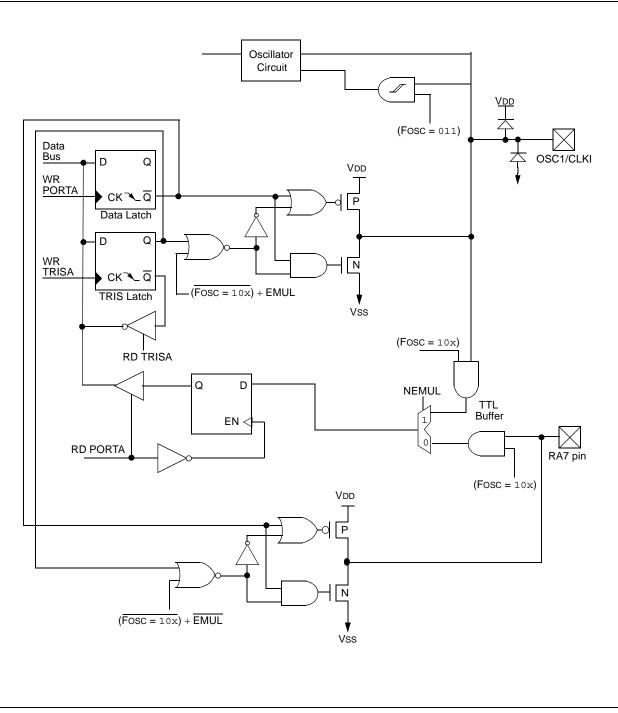
EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

4.7.3.2 Returning to Primary Oscillator with a Reset

A Reset will clear SCS<1:0> back to '00'. The sequence for starting the primary oscillator following a Reset is the same for all forms of Reset, including POR. There is no transition sequence from the alternate system clock to the primary system clock on a Reset condition. Instead, the device will reset the state of the OSCCON register and default to the primary system clock. The sequence of events that take place after this will depend upon the value of the FOSC bits in the Configuration register. If the external oscillator is configured as a crystal (HS, XT or LP), the CPU will be held in the Q1 state until 1024 clock cycles have transpired on the primary clock. This is necessary because the crystal oscillator had been powered down until the time of the transition.


During the oscillator start-up time, instruction execution and/or peripheral operation is suspended.

Note: If Two-Speed Clock Start-up mode is enabled, the INTRC will act as the system clock until the Oscillator Start-up Timer has timed out.


If the primary system clock is either RC, EC or INTRC, the CPU will begin operating on the first Q1 cycle following the wake-up event. This means that there is no oscillator start-up time required because the primary clock is already stable; however, there is a delay between the wake-up event and the following Q2. An internal delay timer of 5-10 μ s will suspend operation after the Reset to allow the CPU to become ready for code execution. The CPU and peripheral clock will be held in the first Q1.

The sequence of events is as follows:

- 1. A device Reset is asserted from one of many sources (WDT, BOR, MCLR, etc.).
- 2. The device resets and the CPU start-up timer is enabled if in Sleep mode. The device is held in Reset until the CPU start-up time-out is complete.
- 3. If the primary system clock is configured as an external oscillator (HS, XT, LP), then the OST will be active waiting for 1024 clocks of the primary system clock. While waiting for the OST, the device will be held in Reset. The OST and CPU start-up timers run in parallel.
- After both the CPU start-up timer and the Oscillator Start-up Timer have timed out, the device will wait for one additional clock cycle and instruction execution will begin.

REGISTER 5-1:	TRISE RE	GISTER (A	DDRESS 8	39h)				
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	_(1)	TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7		ave Port Sta		bits:				
	-	Buffer Full Sta		e waiting to be	road by the	CDU		
		d has been r		s waiting to be	read by the	CFU		
bit 6	OBF: Outp	ut Buffer Full	Status bit					
		-		eviously writter	n word			
bit 5		tput buffer ha		ı bit (in Micropro				
Dit 5				usly input word		,	ust be clea	red in
	softwa							
	0 = No ove	erflow occurre	ed					
bit 4		: Parallel Sla		le Select bit				
		l Slave Port r al Purpose I/0						
bit 3		ented: Read						
bit 0	•			state of the TR	ISE3 bit has	no effect a	nd will alwa	vs read '1'
bit 2		ta Direction	-		020 51(1140			
				RE2/CS/AN7				
	1 = Input		·					
	0 = Output							
bit 1		irection Cont	rol bit for pin	RE1/WR/AN6				
	1 = Input							
bit 0			ol hit for nin	RE0/RD/AN5				
DILU	1 = Input			REU/RD/ANS				
	0 = Output							
	Legend:							
	R = Reada	ıble bit	W = W	ritable bit	U = Unimpl	emented bi	t, read as '	0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

EXAMPLE 6-1: CHANGING THE PRESCALER ASSIGNMENT FROM WDT TO TIMER0

CLRWDT		;	Cl
BANKSEL	OPTION_REG	;	Se
MOVLW	b'xxxx0xxx'	;	Se
MOVWF	OPTION_REG	;	va

- Clear WDT and prescaler Select Bank of OPTION_REG Select TMR0, new prescale value and clock source
- TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
01h,101h	TMR0	Timer0 M	Timer0 Module Register xxxx						xxxx xxxx	uuuu uuuu	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

REGISTER 10-3:	R/W-0	MSSP STA R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	P	S	R/W	UA	BF
	bit 7	0						bit 0
bit 7	SMP: Slew	Rate Contro	l bit					
		or Slave mode						
		ate control dis ate control en					1 MHz)	
bit 6		us Select bit		gn-Speed i	1100e (400 r	(12)		
bit 0		or Slave mode	e:					
	1 = Enable	SMBus spec	ific inputs					
	_	e SMBus spec	cific inputs					
bit 5	D/A: Data/							
	In Master r Reserved.	<u>node:</u>						
	In Slave me	ode:						
		es that the last that the last						
bit 4	P: Stop bit							
		es that a Stop t was not dete		en detected	last			
	Note:	This bit is cle	eared on Re	eset and wh	nen SSPEN	is cleared.		
bit 3	S: Start bit							
		es that a Star t was not det		en detected	d last			
	Note:	This bit is cle	eared on Re	eset and wh	nen SSPEN	is cleared.		
bit 2	R/W: Read	/Write bit Info	ormation bit	(I ² C mode	only)			
	In Slave me	<u>ode:</u>						
	1 = Read 0 = Write							
	Note:					g the last ado Start bit, Stop		
	In Master r							
		nit is in progre						
	0 = mansh Note:	nit is not in pro ORing this b	-	RSEN PE	N RCENO	r ACKEN will	indicate if th	ne MSSP is
	Hoto.	in Idle mode		1.0EN, 1 E				
bit 1	UA: Update	e Address bit	(10-bit Slav	/e mode or	nly)			
		es that the us s does not ne			e address in	the SSPADE	0 register	
bit 0		Full Status bi	-					
	In Transmit							
		e complete, S						
	0 = Receive	e not complet mode:	le, SSPDUr	· is empty				
	1 = Data tra	ansmit in prog ansmit compl						
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '	ʻ0'
							,	

10.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP enable bit, SSPEN (SSPCON<5>).

The SSPCON register allows control of the l^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following l^2C modes to be selected:

- I²C Master mode, clock = Oscillator/4 (SSPADD + 1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

10.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

To ensure proper communication of the l^2C Slave mode, the TRIS bits (TRISx [SDA, SCL]) corresponding to the l^2C pins must be set to '1'. If any TRIS bits (TRISx<7:0>) of the port containing the l^2C pins (PORTx [SDA, SCL]) are changed in software, during l^2C communication using a Read-Modify-Write instruction (BSF, BCF), then the l^2C mode may stop functioning properly and l^2C communication may suspend. Do not change any of the TRISx bits (TRIS bits of the port containing the l^2C pins) using the instruction BSF or BCF during l^2C communication. If it is absolutely necessary to change the TRISx bits during communication, the following method can be used:

```
MOVFTRISC, W; Example for a 40-pin part such as the PIC16F877AIORLW0x18; Ensures <4:3> bits are `11'ANDLWB'1111001'; Sets <2:1> as output, but will not alter other bits<br/>; User can use their own logic here, such as IORLW, XORLW and ANDLWMOVWFTRISC
```

The I^2C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.

10.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

10.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate a receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 10.4.7** "**Baud Rate Generator**" for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required Start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

11.3.2 AUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>) or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive

data. Reading the RCREG register will load bit RX9D with a new value; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR		e on ther sets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	AUSART I	Receive F	Register						0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	Baud Rate Generator Register 0000 00							0000	0000	0000	

TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.**Note 1:**Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

f,b

Bit 'b' in register 'f' is cleared.

16.2 Instruction Descriptions

ADDWF

Syntax: Operands:

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k and the result is placed in the W register.

are added to the eight-bit literal 'k' and the result is placed in the W register.	Description:
Add W and f	BSF
[label] ADDWF f,d	Syntax:
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:
(W) + (f) \rightarrow (destination)	Operation:
	0, , , , , , , , , , , , , , , , , , ,

BCF

Syntax:

Operands:

Operation:

Status Affected:

Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

Bit Clear f

[label] BCF

 $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$

 $0 \rightarrow (f < b >)$

None

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are ANDed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC) + 1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits<10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits, TO and PD, are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) – 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	C
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-Down status bit, PD, is cleared. Time-out status bit, TO, is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine			
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS\toPC$			
Status Affected:	None			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.			

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) \rightarrow (destination)$
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

18.1 DC Characteristics: PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial)

PIC16LF737/747/767/777 (Industrial) PIC16F737/747/767/777 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Vdd	Supply Voltage					
D001		PIC16LF7X7	2.5 2.2 2.0		5.5 5.5 5.5	V V V	A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C A/D not used, -40°C to +85°C
D001 D001A		PIC16F7X7	4.0 Vbor*	_	5.5 5.5	V V	All configurations BOR enabled (Note 6)
D002*	Vdr	RAM Data Retention Voltage (Note 1)		1.5	—	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	Vss	—	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details
	VBOR	Brown-out Reset Voltage					
		PIC16LF7X7					
D005		BORV1:BORV0 = 11	1.96	2.06	2.16	V	$85^{\circ}C \ge T \ge 25^{\circ}C$
		BORV1:BORV0 = 10	2.64	2.78	2.92	V	
		BORV1:BORV0 = 01	4.11	4.33	4.55	V	
		BORV1:BORV0 = 00	4.41	4.64	4.87	V	
D005		PIC16F7X7	Industria	l			
		BORV1:BORV0 = 1x	N.A.	_	N.A.	V	Not in operating voltage range of device
		BORV1:BORV0 = 01	4.16	_	4.5	V	
		BORV1:BORV0 = 00	4.45	_	4.83	V	
D005		PIC16F7X7	Extende	d			
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device
		BORV1:BORV0 = 01	4.07	—	4.59	V	
		BORV1:BORV0 = 00	4.36	—	4.92	V	

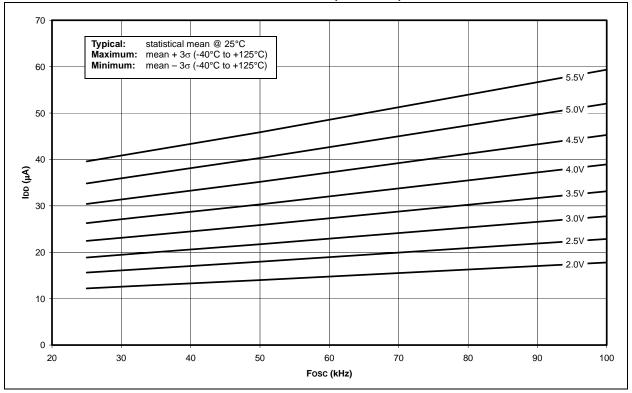
Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

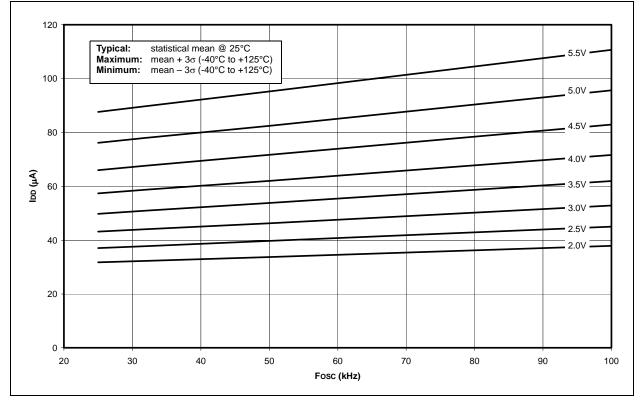
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

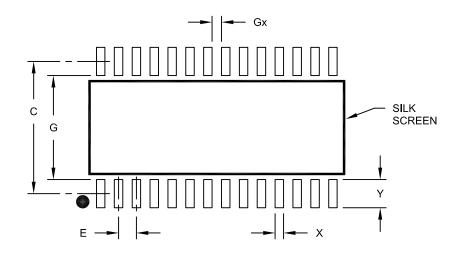

- The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.

4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.


5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring15	5
Acquisition Requirements15	6
ADRESH Register15	4
Analog Port Pins6	8
Analog-to-Digital Converter15	
Associated Registers16	
Automatic Acquisition Time	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Module	
Conversion Clock	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions 15	
Delays	
Effects of a Reset16	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep16	0
Operation in Power-Managed Modes15	8
Source Impedance15	6
Time Delays15	6
Use of the CCP Trigger16	
Absolute Maximum Ratings	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	0
GO/DONE Bit	1
Addressable Universal Synchronous Asynchronous	4
Receiver Transmitter. See AUSART	
ADRESL Register	4
Application Notes	
AN546 (Using the Analog-to-Digital (A/D)	
AN546 (Using the Analog-to-Digital (A/D) Converter)15	
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 28
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	
AN546 (Using the Analog-to-Digital (A/D) Converter)	693243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (9-bit Mode) 141, 14 Setup 141, 14 Setup 14	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 141, 14 Setup 14 Asynchronous Reception 14 Asynchronous Reception with Address	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address 141, 14 Setup 14 Asynchronous Reception 141, 14 Asynchronous Reception 14 Asynchronous Reception <td< td=""><td>693 2 4 3 2808 31 2 9</td></td<>	693 2 4 3 2808 31 2 9
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Intersectiver 14 Asynchronous Receiver 14 Asynchronous Receiver 14 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Associated Registers 141, 14 Setup 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Reception with Address 14 Asynchronous Reception Wi	
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Asynchronous Rec	693 2 4 3 2808 31 2 995
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Intersectiver 14 Asynchronous Receiver 14 Asynchronous Receiver 14 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Associated Registers 141, 14 Setup 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Reception with Address 14 Asynchronous Reception Wi	

Baud Rates, Asynchronous Mode	
(BRGH = 0)	136
Baud Rates, Asynchronous Mode	
(BRGH = 1)	136
High Baud Rate Select (BRGH Bit)	133
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 0)	137
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 1)	137
Sampling	
Clock Source Select (CSRC Bit)	133
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	134
Receive Enable, 9-Bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 133,	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Reception	
Transmission	144
Synchronous Master Reception	
Associated Registers	146
Setup	
Synchronous Master Transmission	
Associated Registers	145
Setup	
Synchronous Slave Mode	
Reception	149
Transmit	
Synchronous Slave Reception	
Associated Registers	149
Setup	
Synchronous Slave Transmission	
Associated Registers	148
Setup	148
Transmit Data, 9th Bit (TX9D)	133
Transmit Enable (TXEN Bit)	
Transmit Enable, 9-Bit (TX9 Bit)	133
Transmit Shift Register Status (TRMT Bit)	133

В

Banking, Data Memory	15
Baud Rate Generator	119
BF	123
BF Status Flag	123
Block Diagrams	
A/D	155
Analog Input Model	
AUSART Receive	
AUSART Transmit	
Baud Rate Generator	
Capture Mode Operation	89
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	168
Compare	89
Fail-Safe Clock Monitor	189
In-Circuit Serial Programming Connections	192
Interrupt Logic	184
Low-Voltage Detect (LVD)	
Low-Voltage Detect (LVD) with External Input	175
Low-Voltage Detect Characteristics	
MSSP (I ² C Master Mode)	117

Device Differences	
Device Overview	5
Features	5
Direct Addressing	
-	

Е

Electrical Characteristics	205
Errata	4
External Clock Input	

F

Fail-Safe Clock Monitor	169,	189
FSR Register		30

1	
I/O Ports	49
l ² Mode	10
Operation	106
I ² Slave Mode	100
Clock Stretching, 10-bit Receive	
Mode (SEN = 1)	112
Clock Stretching, 10-bit Transmit Mode	
Clock Stretching, 7-bit Receive Mode (SEN = 1)	
Clock Stretching, 7-bit Transmit Mode (SEN = 1)	
I ² C Master Mode	
Clock Arbitration	
Operation	-
Reception	
Repeated Start Condition Timing	
Start Condition Timing Transmission	
I ² C Mode	
ACK Pulse	
Acknowledge Sequence Timing	
Baud Rate Generator	119
Bus Collision	400
Repeated Start Condition	
Start Condition	-
Stop Condition	131
Clock Synchronization and the CKP Bit	113
Effect of a Reset	
General Call Address Support	116
Multi-Master Communication, Bus Collision	
and Arbitration	
Multi-Master Mode	127
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Sleep Operation	
Stop Condition Timing	
I ² C Slave Mode	
Addressing	
Clock Stretching	
Reception	
Transmission	
ID Locations	-, -
In-Circuit Debugger	
In-Circuit Serial Programming	169
In-Circuit Serial Programming (ICSP)	192
INDF Register	
Indirect Addressing	30
FSR Register	15

Instruction Set	
Firmware Instructions 19	
General Format 19	
Opcode Field Descriptions 19	
Read-Modify-Write Operations 19	93
ADDLW 19	95
ADDWF 19	95
ANDLW 19	95
ANDWF 19	95
BCF 19	95
BSF19	95
BTFSC 19	95
BTFSS 19	95
CALL	96
CLRF	96
CLRW 19	96
CLRWDT 19	96
COMF	96
DECF	96
DECFSZ 19	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SLEEP	
SUBWF	
SWAPF	
XORLW	
XORWF	
Summary Table	94
INT Interrupt (RB0/INT). See Interrupt Sources.	
INTCON Register	
GIE Bit	
INTOIE Bit	-0
INTOIF Bit	
PEIE Bit	
RBIF Bit	
TMR0IE Bit 2	23
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block 3	
INTRC Modes 3	
Internet Address 27	
Interrupt Sources 169, 18	
A/D Conversion Complete 15	55
Interrupt-on-Change (RB7:RB4)5	
RB0/INT Pin, External 18	
TMR0 Overflow	
TMR0 Overflow	35
TMR0 Overflow	35 18
TMR0 Overflow	35 18

PIC16F7X7 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>/xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F777-I/P 301 = Industrial temp., PDIP package, normal VDD limits, QTP pattern #301. b) PIC16LF767-I/SO = Industrial temp., SOIC package, extended VDD limits.
Device	PIC16F7X7 ⁽¹⁾ , PIC16F7X7T ⁽¹⁾ ; VDD range 4.0V to 5.5V PIC16LF7X7 ⁽¹⁾ , PIC16LF7X7T ⁽¹⁾ ; VDD range 2.0V to 5.5V	 c) PIC16F747-E/P = Extended temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: F = CMOS Flash LF = Low-Power CMOS Flash
Package	ML = QFN (Micro Lead Frame) PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP SS = SSOP	 2: T = in tape and reel – SOIC, SSOP, TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	