

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf737t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F737 PIC16F767
- PIC16F747 PIC16F777

PIC16F737/767 devices are available only in 28-pin packages, while PIC16F747/777 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X7 family share common architecture with the following differences:

- The PIC16F737 and PIC16F767 have one-half of the total on-chip memory of the PIC16F747 and PIC16F777.
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5.
- The 28-pin devices have 16 interrupts, while the 40/44-pin devices have 17.
- The 28-pin devices have 11 A/D input channels, while the 40/44-pin devices have 14.
- The Parallel Slave Port is implemented only on the 40/44-pin devices.
- Low-Power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.

- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to **Section 15.17** "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.

The available features are summarized in Table 1-1. Block diagrams of the PIC16F737/767 and PIC16F747/777 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F737	PIC16F747	PIC16F767	PIC16F777
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	368	368	368	368
Interrupts	16	17	16	17
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM Modules	3	3	3	3
Master Serial Communications	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	11 Input Channels	14 Input Channels	11 Input Channels	14 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: PIC16F7X7 DEVICE FEATURES

Pin Name	PDIP Pin #	QFN Pin #	TQFP Pin #	I/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/AN12 RB0 INT AN12	33	9	8	I/O I I	TTL/ST ⁽¹⁾	Digital I/O. External interrupt. Analog input channel 12.
RB1/AN10 RB1 AN10	34	10	9	I/O I	TTL	Digital I/O. Analog input channel 10.
RB2/AN8 RB2 AN8	35	11	10	I/O I	TTL	Digital I/O. Analog input channel 8.
RB3/CCP2/AN9 RB3 CCP2 ⁽⁵⁾ AN9	36	12	11	I/O I/O I	TTL	Digital I/O. CCP2 capture input, compare output, PWM output. Analog input channel 9.
RB4/AN11 RB4 AN11	37	14	14	I/O I	TTL	Digital I/O. Analog input channel 11
RB5/AN13/CCP3 RB5 AN13 CCP3	38	15	15	I/O I I	TTL	Digital I/O. Analog input channel 13. CCP3 capture input, compare output, PWM output.
RB6/PGC RB6 PGC	39	16	16	I/O I/O	TTL/ST ⁽²⁾	Digital I/O. In-Circuit Debugger and ICSP™ programming clock.
RB7/PGD RB7 PGD	40	17	17	I/O I/O	TTL/ST ⁽²⁾	Digital I/O. In-Circuit Debugger and ICSP programming data.
Legend: I = input — = Not used		O = ou TTL =	tput TTL inpu	t	I/O = inpu ST = Sch	nt/output P = power mitt Trigger input

TABLE 1-3: PIC16F747 AND PIC16F777 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

5: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

Pin Name	PDIP Pin #	QFN Pin #	TQFP Pin #	I/O/P Type	Buffer Type	Description
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	45				OT	PORTC is a bidirectional i/O port.
RC0/110S0/11CKI	15	34	32	1/0	51	Digital I/O
				0		Digital 1/O. Timer1 oscillator output
TICKI				I I		Timer1 external clock input
	16	25	25	•	ет	
RC1	10	- 55	- 55	1/0	51	Digital I/O
TIOSI				1/0		Timer1 oscillator input
CCP2 ⁽⁵⁾				I/O		Capture 2 input. Compare 2 output. PWM 2 output.
RC2/CCP1	17	36	36		ST	and the first first states and the
RC2		50	50	1/0	01	Digital I/O
CCP1				1/0		Capture 1 input. Compare 1 output. PWM 1 output.
PC2/SCK/SCI	10	27	27	., 0	ет	
RC3	10	57	57	1/0	51	Digital I/O
SCK				1/0		Synchronous serial clock input/output
0011				., 0		for SPI mode.
SCL				I/O		Synchronous serial clock input/output
						for I ² C [™] mode.
RC4/SDI/SDA	23	42	42		ST	
RC4				I/O		Digital I/O.
SDI				I		SPI data in.
SDA				I/O		I ² C data I/O.
RC5/SDO	24	43	43		ST	
RC5				I/O		Digital I/O.
SDO				0		SPI data out.
RC6/TX/CK	25	44	44		ST	
RC6				I/O		Digital I/O.
ТХ				0		AUSART asynchronous transmit.
СК				I/O		AUSART synchronous clock.
RC7/RX/DT	26	1	1		ST	
RC7				I/O		Digital I/O.
RX				I		AUSART asynchronous receive.
DT				I/O		AUSART synchronous data.
Legend: I = input		0 = ou	ıtput		I/O = inpu	ut/output P = power

TABLE 1-3: PIC16F747 AND PIC16F777 PINOUT DESCRIPTION (CONTINUED)

= Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

5: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

DATA MEMORY MAP FOR PIC16F747 AND THE PIC16F777

Δ	File Address		File Address		File Address	A	File ddre
Indirect addr (*)	00h	Indirect addr (*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMRO	01h	OPTION REG	81h	TMR0	101h	OPTION REG	18
PCI	02h	PCI	82h	PCL	102h	PCL	18
	03h		0211 83h	STATUS	103h	STATUS	18
FSR	04h	ESR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h	WDTCON	105h		18!
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD	08h	TRISD	88h		108h		188
PORTE	09h	TRISE	89h	LVDCON	109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	180
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18
TMR1H	0Fh	OSCCON	8Fh	PMADRH	10Fh		18
T1CON	10h	OSCTUNE	90h		110h		19
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h	CCPR3L	95h				
CCPR1H	16h	CCPR3H	96h				
CCP1CON	17h	CCP3CON	97h	General		General	
RCSTA	18h	TXSTA	98h	Register		Register	
TXREG	19h	SPBRG	99h	16 Bytes		16 Bytes	
RCREG	1Ah		9Ah				
CCPR2L	1Bh	ADCON2	9Bh				
CCPR2H	1Ch	CMCON	9Ch				
CCP2CON	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
	20h	General	A0h	General	120h	General	1A
		Purpose		Purpose		Purpose	
General		Register 80 Bytes		Register 80 Bytes		Register	
Register		UU Dytes	FFb	00 Dytes	16Fb	00 Dytes	1=
			F0h		170h		1F(
SO DYIES		Accesses		Accesses		Accesses	
		70h-7Fh		70h-7Fh		70h-7Fh	
	7Fb		FFh		17Fh		1F
		Bank 1		Bank 2		Bank 3	

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 and CCP3 peripheral interrupts.

-n = Value at POR

REGISTER 2-6:	PIE2: PER	IPHERAL	INTERRU	PT ENABLE	EREGIST	ER 2 (ADD	RESS 8D	h)			
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
	OSFIE	CMIE	LVDIE		BCLIE		CCP3IE	CCP2IE			
	bit 7							bit 0			
bit 7	OSFIE: Os	cillator Fail I	nterrupt Ena	ble bit							
	1 = Enable 0 = Disable	1 = Enabled 0 = Disabled									
bit 6	CMIE: Com	CMIE: Comparator Interrupt Enable bit									
	1 = Enable 0 = Disable	L = Enabled D = Disabled									
bit 5	LVDIE: Low-Voltage Detect Interrupt Enable bit										
	 1 = LVD interrupt is enabled 0 = LVD interrupt is disabled 										
bit 4	Unimplemented: Read as '0'										
bit 3	BCLIE: Bus	s Collision Ir	nterrupt Enal	ole bit							
	1 = Enable 0 = Disable	bus collision bus collisio	n interrupt in n interrupt in	the SSP whe the SSP wh	en configure en configure	ed for I ² C Ma ed for I ² C M	aster mode aster mode				
bit 2	Unimplem	ented: Read	d as '0'								
bit 1	CCP3IE: C	CP3 Interru	ot Enable bit								
	1 = Enable 0 = Disable	s the CCP3 is the CCP3	interrupt interrupt								
bit 0	CCP2IE: C	CP2 Interrup	ot Enable bit								
	 1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt 										
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented l	bit, read as	'0'			

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

The PIC16F7X7 can be operated in eight different oscillator modes. The user can program three configuration bits (FOSC2:FOSC0) to select one of these eight modes (modes 5-8 are new PIC16 oscillator configurations):

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. RC External Resistor/Capacitor with FOSC/4 output on RA6
- 5. RCIO External Resistor/Capacitor with I/O on RA6
- 6. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 7. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 8. ECIO External Clock with I/O on RA6

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (see Figure 4-1 and Figure 4-2). The PIC16F7X7 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 4-1: CRYSTAL OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR (FOR
DESIGN GUIDANCE ONLY)

Osc Type	Crystal	Typical Capacitor Values Tested:			
	Fieq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	56 pF	56 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15 pF	15 pF		
	20 MHz	15 pF	15 pF		

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.
 - 2: Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

4.7 Power-Managed Modes

4.7.1 RC_RUN MODE

When SCS bits are configured to run from the INTRC, a clock transition is generated if the system clock is not already using the INTRC. The event will clear the OSTS bit and switch the system clock from the primary system clock (if SCS<1:0> = 00) determined by the value contained in the configuration bits, or from the T1OSC (if SCS<1:0> = 01) to the INTRC clock option and shut-down the primary system clock to conserve power. Clock switching will not occur if the primary system clock is already configured as INTRC.

If the system clock does not come from the INTRC (31.25 kHz) when the SCS bits are changed and the IRCF bits in the OSCCON register are configured for a frequency other than INTRC, the frequency may not be stable immediately. The IOFS bit (OSCCON<2>) will be set when the INTOSC or postscaler frequency is stable, after 4 ms (approx.).

After a clock switch has been executed, the OSTS bit is cleared, indicating a low-power mode and the device does not run from the primary system clock. The internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the INTRC oscillator. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-7).

Current System Clock	SCS bits<1:0> Modified to:	Delay	OSTS bit	IOFS bit	T1RUN bit	New System Clock	Comments
LP, XT, HS, T1OSC, EC, RC	10 (INTRC) FOSC<2:0> = LP, XT or HS	8 Clocks of INTRC	0	1 ⁽¹⁾	0	INTRC or INTOSC or INTOSC Postscaler	The internal RC oscillator frequency is dependant upon the IRCF bits.
LP, XT, HS, INTRC, EC, RC	01 (T1OSC) FOSC<2:0> = LP, XT or HS	8 Clocks of T1OSC	0	N/A	1	T1OSC	T1OSCEN bit must be enabled.
INTRC T1OSC	00 FOSC<2:0> = EC or FOSC<2:0> = RC	8 Clocks of EC or RC	1	N/A	0	EC or RC	
INTRC T1OSC	00 FOSC<2:0> = LP, XT, HS	1024 Clocks + 8 Clocks of LP, XT, HS	1	N/A	0	LP, XT, HS	During the 1024 clocks, program execution is clocked from the secondary oscillator until the primary oscillator becomes stable.
LP, XT, HS	00 (Due to Reset) LP, XT, HS	1024 Clocks	1	N/A	0	LP, XT, HS	When a Reset occurs, there is no clock transition sequence. Instruction execution and/or peripheral operation is suspended unless Two-Speed Start-up mode is enabled, after which the INTRC will act as the system clock until the Oscillator Start-up Timer has expired.

TABLE 4-4: CLOCK SWITCHING MODES

Note 1: If the new clock source is the INTOSC or INTOSC postscaler, then the IOFS bit will be set 4 ms (approx.) after the clock change.

FIGURE 5-9: BLOCK DIAGRAM OF RB1/AN10 PIN

REGISTER 7-1:	EGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)											
	U-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N				
	bit 7							bit 0				
bit 7	Unimplem	Jnimplemented: Read as '0'										
bit 6	T1RUN Ti	TIRUN: Timer1 System Clock Status bit										
	1 = System 0 = System	= System clock is derived from Timer1 oscillator= System clock is derived from another source										
bit 5-4	T1CKPS<1	1:0>: Timer	1 Input Clock	<pre>< Prescale Se</pre>	elect bits							
	11 = 1:8 P 10 = 1:4 P 01 = 1:2 P 00 = 1:1 P	 = 1:8 Prescale value = 1:4 Prescale value = 1:2 Prescale value = 1:1 Prescale value 										
bit 3	T1OSCEN	T1OSCEN: Timer1 Oscillator Enable Control bit										
	 1 = Oscillator is enabled 0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain) 											
bit 2	T1SYNC:	Timer1 Exte	rnal Clock Ir	nput Synchro	nization Cont	rol bit						
	<u>TMR1CS = 1:</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0:											
	This bit is i	gnored. Tim	er1 uses the	e internal cloo	ck when TMR	1CS = 0.						
bit 1	TMR1CS:	Timer1 Cloo	ck Source Se	elect bit								
	1 = Extern 0 = Interna	al clock from al clock (Fo	m pin RC0/T sc/4)	10SO/T1CK	I (on the risin	g edge)						
bit 0	TMR1ON:	Timer1 On	bit									
	1 = Enable 0 = Stops	es Timer1 Timer1										
	Legend:											
	R = Reada	able bit	W = V	Writable bit	U = Unim	plemented	bit, read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

10.3.3 **ENABLING SPI I/O**

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

TYPICAL CONNECTION 10.3.4

Figure 10-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

ER 11-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Serial Port Enable bit											
	1 = Serial 0 = Serial	port enabled	l (configures d	RC7/RX/D	T and RC6/T	X/CK pins a	as serial port	t pins)				
bit 6	RX9: 9-bit Receive Enable bit											
	1 = Selects 0 = Selects	s 9-bit recep s 8-bit recep	tion tion									
bit 5	SREN: Sin	gle Receive	Enable bit									
	<u>Asynchronous mode:</u> Don't care.											
	Synchronous mode – Master:											
	1 = Enables single receive											
	0 = Disables single receive This bit is cleared after reception is complete.											
	<u>Synchronous mode – Slave:</u> Don't care.											
bit 4	CREN: Continuous Receive Enable bit											
	Asynchronous mode: 1 = Enables continuous receive											
	0 = Disables continuous receive											
	Synchronous mode:											
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 											
bit 3	ADDEN: A	ddress Dete	ect Enable bi	t								
	Asynchron	ous mode 9	-bit (RX9 = 1	<u>):</u>								
	 1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set 											
	0 = Disabl	es address	detection, al	l bytes are i	eceived and	ninth bit ca	n be used a	s parity bit				
bit 2	FERR: Fra	ming Error b	bit									
	1 = Framin 0 = No frar	ig error (can ming error	be updated	by reading	RCREG regi	ster and ree	ceiving next	valid byte)				
bit 1	OERR: Ov	errun Error b	oit									
	1 = Overru 0 = No ove	n error (can errun error	be cleared l	by clearing	bit CREN)							
bit 0	RX9D: 9th	bit of Receiv	ved Data									
	Can be pa	rity bit but m	ust be calcu	lated by use	er firmware.							
	Legend:											
	R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$											
	-n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	Inknown				

11.1 AUSART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the AUSART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 11-1 shows the formula for computation of the baud rate for different AUSART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

11.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 11-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X + 1))	Baud Rate = Fosc/(16(X + 1))
1	(Synchronous) Baud Rate = Fosc/(4(X + 1))	N/A

Legend: X = value in SPBRG (0 to 255).

TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	x000 0000x
99h	SPBRG	Baud Rat	te Genera	0000 0000	0000 0000						

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 12.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

FIGURE 12-1: A/D BLOCK DIAGRAM

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF (if required).
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

© 2003-2013 Microchip Technology Inc.

12.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT2:ACQT0 (ADCON2<5:3>) and ADCS2:ADCS0 (ADCON1<6>, ADCON0<7:6>) bits should be updated in accordance with the power-managed mode clock that will be used. After the power-managed mode is entered (either of the power-managed Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same power-managed mode clock source until the conversion has been completed.

If the power-managed mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D RC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode.

12.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISB and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input, but not as an analog input, may cause the digital input buffer to consume current that is out of the device's specification.

Package Marking Information (Continued)

NOTES: