

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf737t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 and CCP3 peripheral interrupts.

-n = Value at POR

REGISTER 2-6:	PIE2: PER	IPHERAL	INTERRU	PT ENABLE	EREGIST	ER 2 (ADD	RESS 8D	h)				
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
	OSFIE	CMIE	LVDIE		BCLIE		CCP3IE	CCP2IE				
	bit 7							bit 0				
bit 7	OSFIE: Os	cillator Fail I	nterrupt Ena	ble bit								
	1 = Enabled 0 = Disabled											
bit 6	CMIE: Com	nparator Inte	rrupt Enable	bit								
	1 = Enable 0 = Disable	d ed										
bit 5	LVDIE: Lov	v-Voltage De	etect Interrup	ot Enable bit								
	1 = LVD int 0 = LVD int	errupt is ena errupt is disa	abled abled									
bit 4	Unimplem	ented: Read	d as '0'									
bit 3	BCLIE: Bus	s Collision Ir	nterrupt Enal	ole bit								
	1 = Enable 0 = Disable	bus collision bus collisio	n interrupt in n interrupt in	the SSP whe the SSP wh	en configure en configure	ed for I ² C Ma ed for I ² C M	aster mode aster mode					
bit 2	Unimplem	ented: Read	d as '0'									
bit 1	CCP3IE: C	CP3 Interru	ot Enable bit									
	1 = Enable 0 = Disable	s the CCP3 is the CCP3	interrupt interrupt									
bit 0	CCP2IE: C	CP2 Interrup	ot Enable bit									
	1 = Enable 0 = Disable	s the CCP2 s the CCP2	interrupt interrupt									
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented l	bit, read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

3.0 READING PROGRAM MEMORY

The Flash program memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

bit bit bit

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices can have up to 8K words of program Flash, with an address range from 0h to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as '0's.

3.1 PMADR

The address registers can address up to a maximum of 8K words of program Flash.

When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADR register. The upper Most Significant bits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit, RD, initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
	reserved	_	—	—	—	_	—	RD
	bit 7							bit 0
7	Reserved:	Read as '1'						
6-1	Unimplem	ented: Read	as '0'					
0	RD: Read (Control bit						
	1 = Initiate in softv	s a Flash re vare.	ad, RD is cle	eared in har	dware. The I	RD bit can o	only be set (r	ot cleared)
	0 = Flash r	ead comple	ted					
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'
	-n = Value	at POR	'1' = B	lit is set	'0' = Bit i	s cleared	x = Bit is u	Inknown

4.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal manufacturing variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillaton frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 4-4 shows how the R/C combination is connected.

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

The RCIO Oscillator mode (Figure 4-5) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

FIGURE 4-5: RCIO OSCILLATOR MODE

4.5 Internal Oscillator Block

The PIC16F7X7 devices include an internal oscillator block which generates two different clock signals; either can be used as the system's clock source. This can eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source which can be used to directly drive the system clock. It also drives the INTOSC postscaler which can provide a range of six clock frequencies, from 125 kHz to 4 MHz.

The other clock source is the internal RC oscillator (INTRC) which provides a 31.25 kHz (32 μs nominal period) output. The INTRC oscillator is enabled by selecting the INTRC as the system clock source or when any of the following are enabled:

- · Power-up Timer
- · Watchdog Timer
- Two-Speed Start-up
- Fail-Safe Clock Monitor

These features are discussed in greater detail in **Section 15.0 "Special Features of the CPU"**.

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 38).

Note: Throughout this data sheet, when referring specifically to a generic clock source, the term "INTRC" may also be used to refer to the clock modes using the internal oscillator block. This is regardless of whether the actual frequency used is INTOSC (8 MHz), the INTOSC postscaler or INTRC (31.25 kHz).

4.6.3 CLOCK TRANSITION AND WDT

When clock switching is performed, the Watchdog Timer is disabled because the Watchdog Ripple Counter is used as the Oscillator Start-up Timer (OST).

Note: The OST is only used when switching to XT, HS and LP Oscillator modes.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog Counter is re-enabled with the Counter Reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	IOFS	SCS1	SCS0
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6-4 IRCF<2:0>: Internal RC Oscillator Frequency Select bits
 - 000 = 31.25 kHz
 - 001 = 125 kHz 010 = 250 kHz
 - O11 = 500 kHz
 - 100 = 1 MHz
 - 101 = 2 MHz
 - 110 = 4 MHz
 - 111 = 8 MHz

bit 3 **OSTS:** Oscillator Start-up Time-out Status bit⁽¹⁾

1 = Device is running from the primary system clock

- 0 = Device is running from the Timer1 oscillator (T1OSC) or INTRC as a secondary system clock
 - Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the oscillator mode.
- bit 2 IOFS: INTOSC Frequency Stable bit
 - 1 = Frequency is stable
 - 0 = Frequency is not stable
- bit 1-0 SCS<1:0>: Oscillator Mode Select bits
 - 00 = Oscillator mode defined by FOSC<2:0>
 - 01 = T1OSC is used for system clock
 - 10 = Internal RC is used for system clock
 - 11 = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F7X7

FIGURE 4-11: TIMING LP CLOCK TO PRIMARY SYSTEM CLOCK AFTER RESET (EC, RC, INTRC)

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the formula:

EQUATION 9-3:

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.6.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 9-4:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 9-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	CMIF	LVDIF	_	BCLIF		CCP3IF	CCP2IF	000- 0-00	000- 0-00
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	CMIE	LVDIE	—	BCLIE	_	CCP3IE	CCP2IE	000- 0-00	000- 0-00
87h	TRISC	PORTC D	ata Directior	n Register						1111 1111	1111 1111
11h	TMR2	Timer2 Mo	odule Registe	er						0000 0000	0000 0000
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	1111 1111
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/PW	M Register	1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PW	M Register	1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON		—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	ompare/PW	M Register 2	2 (LSB)					xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	ompare/PW	M Register 2	2 (MSB)					xxxx xxxx	uuuu uuuu
1Dh	CCP2CON		_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
95h	CCPR3L	Capture/C	ompare/PW		xxxx xxxx	uuuu uuuu					
96h	CCPR3H	Capture/C	ompare/PW		xxxx xxxx	uuuu uuuu					
97h	CCP3CON	—	—	CCP3X	CCP3Y	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000
Legend:	v = unknow		- hanned		nented rea	d as '0' Sha	adad calls a	are not use	hy PWM	and Timer2	

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767 devices; always maintain these bits clear.

10.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

10.3.4 TYPICAL CONNECTION

Figure 10-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

10.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times, as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

10.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 4h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch

must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 10-4: SLAVE SYNCHRONIZATION WAVEFORM

PIC16F7X7

10.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 10-23).

10.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

10.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 10-24).

10.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 10-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 10-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

10.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 10-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 10-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 10-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

Baud		Fosc = 8 N	IHz	I	Fosc = 4 N	1Hz	I	Fosc = 2 N	ЛНz	Fosc = 1 MHz			
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	NA	_		0.300	0	207	0.300	0	103	0.300	0	51	
1.2	1.202	+0.16	103	1.202	+0.16	51	1.202	+0.16	25	1.202	+0.16	12	
2.4	2.404	+0.16	51	2.404	+0.16	25	2.404	+0.16	12	2.232	-6.99	6	
9.6	9.615	+0.16	12	8.929	-6.99	6	10.417	+8.51	2	NA	_	_	
19.2	17.857	-6.99	6	20.833	+8.51	2	NA	_	_	NA	_	_	
28.8	31.250	+8.51	3	31.250	+8.51	1	31.250	+8.51	0	NA	_	_	
38.4	41.667	+8.51	2	NA	_	_	NA	_	_	NA	_	_	
57.6	62.500	+8.51	1	62.500	8.51	0	NA	_	_	NA	_	_	

TABLE 11-5: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

TABLE 11-6: INTRC BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

Baud	Fosc = 8 MHz Baud				Fosc = 4 N	IHz	I	Fosc = 2 N	/Hz	Fosc = 1 MHz			
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	NA	_	_	NA	_	_	NA	_	_	0.300	0	207	
1.2	NA	_	—	1.202	+0.16	207	1.202	+0.16	103	1.202	+0.16	51	
2.4	2.404	+0.16	207	2.404	+0.16	103	2.404	+0.16	51	2.404	+0.16	25	
9.6	9.615	+0.16	51	9.615	+0.16	25	9.615	+0.16	12	8.929	-6.99	6	
19.2	19.231	+0.16	25	19.231	+0.16	12	17.857	-6.99	6	20.833	+8.51	2	
28.8	29.412	+2.12	16	27.778	-3.55	8	31.250	+8.51	3	31.250	+8.51	1	
38.4	38.462	+0.16	12	35.714	-6.99	6	41.667	+8.51	2	NA	_	_	
57.6	55.556	-3.55	8	62.500	+8.51	3	62.500	+8.51	1	62.500	+8.51	0	

PIC16F7X7

REGIST	TER 15	5-2: 0	CONFIG	URATI	ON WC	DRD RE	EGISTER 2	2 (ADD	RESS 2	2008h)			
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
—	—	—	—	_	—	_	BORSEN	_			_	IESO	FCMEN
bit 13													bit 0
bit 13-7	Unim	plemen	ted: Rea	ad as '1'									
bit 6	BORSEN: Brown-out Reset Software Enable bit												
	Refer to Configuration Word Register 1, bit 6 for the function of this bit.												
bit 5-2	Unimplemented: Read as '1'												
bit 1	IESO	: Interna	al Extern	al Switch	nover bit								
	1 = In 0 = In	nternal E Iternal E	xternal S xternal S	Switchov Switchov	er mode er mode	e enable e disable	d ed						
bit 0	FCM	EN: Fail	-Safe Cl	ock Mon	itor Enal	ble bit							
	1 = Fa 0 = Fa	ail-Safe ail-Safe	Clock M Clock M	onitor er onitor di	nabled sabled								
	Lege	nd:											
	R = F	Readable	e bit		W = V	Writable	bit	U = Uni	mpleme	nted bit, r	ead as '	0'	
	-n = \	Value at	POR		'1' =	Bit is se	t	'0' = Bit	is cleare	ed	x = Bit is	s unknov	vn

FAIL-SAFE OPTION 15.17.4

The Fail-Safe Clock Monitor (FSCM) is designed to allow the device to continue to operate even in the event of an oscillator failure.

The FSCM function is enabled by setting the FCMEN bit in Configuration Word Register 2.

In the event of an oscillator failure, the FSCM will generate an oscillator fail interrupt and will switch the system clock over to the internal oscillator. The system will continue to come from the internal oscillator until the Fail-Safe condition is exited. The Fail-Safe condition is exited with either a Reset, the execution of a SLEEP instruction or a write to the SCS bits of a different value.

The frequency of the internal oscillator will depend upon the value contained in the IRCF bits. Another clock source can be selected via the IRCF and the SCS bits of the OSCCON register.

FSCM TIMING DIAGRAM

FIGURE 15-15:

The FSCM sample clock is generated by dividing the INTRC clock by 64. This will allow enough time between FSCM sample clocks for a system clock edge to occur.

On the rising edge of the postscaled clock, the monitoring latch (CM = 0) will be cleared. On a falling edge of the primary or secondary system clock, the monitoring latch will be set (CM = 1). In the event that a falling edge of the postscaled clock occurs and the monitoring latch is not set, a clock failure has been detected.

While in Fail-Safe mode, a Reset will exit the Fail-Safe condition. If the primary clock source is configured for a crystal, the OST timer will wait for the 1024 clock cycles for the OST time-out and the device will continue running from the internal oscillator until the OST is complete. A SLEEP instruction, or a write to the SCS bits (where SCS bits do not = 00), can be performed to put the device into a low-power mode.

If Reset occurs while in Fail-Safe mode and the primary clock source is EC or RC, then the device will immediately switch back to EC or RC mode.

Note: Two-Speed Start-up is automatically enabled when the Fail-Safe option is enabled.

15.17.4.1 Fail-Safe in Low-Power Mode

A change of SCS<1:0> or the SLEEP instruction will end the Fail-Safe condition. The system clock will default to the source selected by the SCS bits, which is either T1OSC, INTRC or none (Sleep mode). However, the FSCM will continue to monitor the system clock. If the secondary clock fails, the device will immediately switch to the internal oscillator clock. If OSFIE is set, an interrupt will be generated.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indu	737/747/767/777 strial)	Standa Operati	rd Oper ng temp	ating Co erature	onditions (unles -40°C \leq TA	s otherwise stated $\leq +85^{\circ}$ C for indust	l) rial				
PIC16F7 (Indu	37/747/767/777 strial, Extended)	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Device	Тур	Max	Units		Conditions					
	Supply Current (IDD) ^(2,3)										
	PIC16LF7X7	.950	1.3	mA	-40°C						
		.930	1.2	mA	+25°C	VDD = 3.0V					
		.930	1.2	mA	+85°C		Fosc = 8 MHz				
	All devices	1.8	3.0	mA	-40°C		(RC_RUN mode,				
		1.7	2.8	mA	+25°C	V5_0V	Internal RC Oscillator)				
		1.7	2.8	mA	+85°C	VDD = 3.0V					
	Extended devices	2.0	4.0	mA	+125°C						
	PIC16LF7X7	9	13	μΑ	-10°C						
		9	14	μΑ	+25°C	VDD = 2.0V					
		11	16	μA	+70°C						
	PIC16LF7X7	12	34	μΑ	-10°C		Fosc = 32 kHz				
		12	31	μΑ	+25°C	VDD = 3.0V	(SEC_RUN mode,				
		14	28	μΑ	+70°C		Timer1 as Clock)				
	All devices	20	72	μΑ	-10°C						
		20	65	μΑ	+25°C	VDD = 5.0V					
		25	59	μA	+70°C						

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF (Indus	737/747/767/777 strial)	Standa Operati	rd Oper ng temp	ating Co erature	onditions (unless -40°C ≤ Ta	otherwise stated ≤ +85°C for indust	l) rial			
PIC16F7: (Indus	37/747/767/777 strial, Extended)	Standa Operati	rd Oper ng temp	ating Co erature	onditions (unless -40°C ≤ TA -40°C ≤ TA	otherwise stated ≤ +85°C for indust ≤ +125°C for exter	I) rial nded			
Param No.	Device	Тур	Max	Units	Conditions					
	Module Differential Curren	nts (∆lw	от, ∆Іво	R, ∆ILVD	, Δ IOSCB, Δ IAD)					
D022	Watchdog Timer	1.5	3.8	μΑ	-40°C					
(∆IWDT)		2.2	3.8	μΑ	+25°C	VDD = 2.0V				
		2.7	4.0	μΑ	+85°C					
		2.3	4.6	μΑ	-40°C					
		2.7	4.6	μΑ	+25°C	VDD = 3.0V				
		3.1	4.8	μA	+85°C					
		3.0	10.0	μΑ	-40°C					
		3.3	10.0	μA	+25°C	Vpp = 5.0V				
		3.9	13.0	μA	+85°C	100 - 0.01				
	Extended devices	5.0	21.0	μΑ	+125°C					
D022A	Brown-out Reset	17	35	μA	-40°C to +85°C	VDD = 3.0V				
$(\Delta IBOR)$		47	45	μA	-40°C to +85°C	VDD = 5.0V				
		0	0	μΑ	-40°C to +85°C	VDD = 2.0V VDD = 3.0V VDD = 5.0V	BOREN:BORSEN = 10 in Sleep mode			
	Extended devices	48	50	μΑ	-40°C to +125°C	VDD = 5.0V				
D022B	Low-Voltage Detect	14	25	μA	-40°C to +85°C	VDD = 2.0V				
(Allvd)		18	35	μA	-40°C to +85°C	VDD = 3.0V				
		21	45	μA	-40°C to +85°C	VDD = 5.0V				
	Extended devices	24	50	μA	-40°C to +125°C	VDD = 5.0V				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF737/747/767/777 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F737/747/767/777 (Industrial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Device	Тур	Max	Units	Conditions						
	Module Differential Currents (∆lwDT, ∆lBOR, ∆lLVD, ∆lOSCB, ∆IAD)										
D025 (∆IOSCB)	Timer1 Oscillator	1.7	2.3	μΑ	-40°C						
		1.8	2.3	μΑ	+25°C	VDD = 2.0V					
		2.0	2.3	μΑ	+85°C		32 kHz on Timer1				
		2.2	3.8	μΑ	-40°C						
		2.6	3.8	μΑ	+25°C	VDD = 3.0V					
		2.9	3.8	μΑ	+85°C						
		3.0	6.0	μΑ	-40°C						
		3.2	6.0	μΑ	+25°C	VDD = 5.0V					
		3.4	7.0	μΑ	+85°C						
D026 (∆IAD)	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V					
		0.001	2.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on Sloop not converting				
		0.003	2.0	μA	-40°C to +85°C	VDD = 5.0V	Arb on, Sleep, not converting				
	Extended devices	4	8	mA	-40°C to +125°C	VDD = 5.0V					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 18-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 18-8: BROWN-OUT RESET TIMING

TABLE 18-6:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2			μS	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (no prescaler)	13.6	16	18.4	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_		Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	61.2	72	82.8	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset		—	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	$VDD \leq VBOR (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Example

20.0 PACKAGING INFORMATION

20.1 Package Marking Information

28-Lead SPDIP (.300")

W

Wake-up from Sleep	
MDT Report	
Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
WDT Reset, Normal Operation	172, 179, 180
WDT Reset, Sleep	172, 179, 180
WCOL	121, 122, 123, 126
WCOL Status Flag	121, 122, 123, 126
WWW Address	
WWW, On-Line Support	4