

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf737t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F737 PIC16F767
- PIC16F747 PIC16F777

PIC16F737/767 devices are available only in 28-pin packages, while PIC16F747/777 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X7 family share common architecture with the following differences:

- The PIC16F737 and PIC16F767 have one-half of the total on-chip memory of the PIC16F747 and PIC16F777.
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5.
- The 28-pin devices have 16 interrupts, while the 40/44-pin devices have 17.
- The 28-pin devices have 11 A/D input channels, while the 40/44-pin devices have 14.
- The Parallel Slave Port is implemented only on the 40/44-pin devices.
- Low-Power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.

- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to **Section 15.17** "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.17.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.

The available features are summarized in Table 1-1. Block diagrams of the PIC16F737/767 and PIC16F747/777 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023) which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

Key Features	PIC16F737	PIC16F747	PIC16F767	PIC16F777
Operating Frequency	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz	DC – 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	368	368	368	368
Interrupts	16	17	16	17
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM Modules	3	3	3	3
Master Serial Communications	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART	MSSP, AUSART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	11 Input Channels	14 Input Channels	11 Input Channels	14 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packaging	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: PIC16F7X7 DEVICE FEATURES

TABLE 1-2:PIC16F737 AND PIC16F767 PINOUT DESCRIPTION

Pin Name	PDIP SOIC SSOP Pin #	QFN Pin #	I/O/P Type	Buffer Type	Description
OSC1/CLKI/RA7 OSC1	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST
CLKI			I		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
RA7			I/O	ST	Digital I/O.
OSC2/CLKO/RA6 OSC2	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
CLKO			0		In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6			I/O	ST	Digital I/O.
MCLR/VPP/RE3 MCLR	1	26	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active-low Reset to the device.
Vpp			Р		Programming voltage input.
RE3			I	ST	Digital input only pin.
					PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	27	I/O I	TTL	Digital I/O. Analog input 0.
RA1/AN1	3	28		тті	
RA1 AN1			I/O I		Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF	4	1		TTL	
RA2			I/O		Digital I/O.
AN2					Analog input 2.
CVRFF			0		Comparator voltage reference output.
RA3/AN3/VRFF+	5	2	-	тті	·····
RA3	Ũ	_	I/O		Digital I/O.
AN3			I		Analog input 3.
VREF+			I		A/D reference voltage input (high).
RA4/T0CKI/C1OUT	6	3		ST	
			1/0		Digital I/O – Open-drain when configured as output.
C10UT			Ö		Comparator 1 output bit.
RA5/AN4/LVDIN/SS/C2OUT	7	4	_	TTL	
RA5			I/O		Digital I/O.
AN4			I I		Analog input 4.
			I/O		Low-Voltage Detect input.
C2OUT			0		Comparator 2 output bit.
legend: = input	۱ ر			I I/O -	$= \text{input/output} \qquad P = \text{power}$
= Not used	т	TI – TTI	input		Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: Pin location of CCP2 is determined by the CCPMX bit in Configuration Word Register 1.

2.2.2.1 Status Register

The Status register contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the Status register as $000u \ uluu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

11/00-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0
IRP: Regis	ter Bank Sele	ct bit (used f	or indirect ac	ddressing)			
0 = Bank 0	, 1 (00h-FFh)	,					
RP1:RP0:	Register Banl	Select bits	used for dire	ect addressi	ng)		
11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h-1FFr 2 (100h-17Fh 1 (80h-FFh) 0 (00h-7Fh) is 128 bytes.	ı))					
TO: Time-c	out bit						
1 = After p 0 = A WDT	ower-up, CLR	WDT instructio	ON OF SLEEP	instruction			
PD: Power	-Down bit						
1 = After p 0 = By exe	ower-up or by cution of the s	the CLRWDT	instruction ction				
Z: Zero bit							
1 = The re: 0 = The re:	sult of an arith sult of an arith	imetic or logi imetic or logi	c operation is c operation is	s zero s not zero			
DC: Digit C	arry/borrow b	it (addwf, ai	DLW, SUBI	LW, SUBWF	instruction	s)	
1 = A carry 0 = No car	v-out from the ry-out from the	4th low-orde e 4th low-ord	r bit of the re er bit of the i	esult occurre result	ed		
C: Carry/bo	orrow bit (ADD	WF, ADDLW	, SUBLW, S	SUBWF instr	uctions)		
1 = A carry 0 = No car	ry-out from the	Most Signific e Most Signif	ant bit of the	e result occu ne result occ	urred curred		
Note:	For borrow, two's comple	the polarity	is reversed second oper	. A subtract and. For rot	ction is exe ate (RRF,	ecuted by RLF) instru	adding the ictions, this

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.4 RC Oscillator

For timing insensitive applications, the "RC" and "RCIO" device options offer additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal manufacturing variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillaton frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 4-4 shows how the R/C combination is connected.

In the RC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic.

The RCIO Oscillator mode (Figure 4-5) functions like the RC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6).

FIGURE 4-5: RCIO OSCILLATOR MODE

4.5 Internal Oscillator Block

The PIC16F7X7 devices include an internal oscillator block which generates two different clock signals; either can be used as the system's clock source. This can eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source which can be used to directly drive the system clock. It also drives the INTOSC postscaler which can provide a range of six clock frequencies, from 125 kHz to 4 MHz.

The other clock source is the internal RC oscillator (INTRC) which provides a 31.25 kHz (32 μs nominal period) output. The INTRC oscillator is enabled by selecting the INTRC as the system clock source or when any of the following are enabled:

- · Power-up Timer
- · Watchdog Timer
- Two-Speed Start-up
- Fail-Safe Clock Monitor

These features are discussed in greater detail in **Section 15.0 "Special Features of the CPU"**.

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 38).

Note: Throughout this data sheet, when referring specifically to a generic clock source, the term "INTRC" may also be used to refer to the clock modes using the internal oscillator block. This is regardless of whether the actual frequency used is INTOSC (8 MHz), the INTOSC postscaler or INTRC (31.25 kHz).

4.6.4 MODIFYING THE IRCF BITS

The IRCF bits can be modified at any time regardless of which clock source is currently being used as the system clock. The internal oscillator allows users to change the frequency during run time. This is achieved by modifying the IRCF bits in the OSCCON register. The sequence of events that occur after the IRCF bits are modified is dependent upon the initial value of the IRCF bits before they are modified. If the INTRC (31.25 kHz, IRCF<2:0> = 000) is running and the IRCF bits are modified to any other value than '000', a 4 ms (approx.) clock switch delay is turned on. Code execution continues at a higher than expected frequency while the new frequency stabilizes. Time sensitive code should wait for the IOFS bit in the OSCCON register to become set before continuing. This bit can be monitored to ensure that the frequency is stable before using the system clock in time critical applications.

If the IRCF bits are modified while the internal oscillator is running at any other frequency than INTRC (31.25 kHz, IRCF<2:0> \neq 000), there is no need for a 4 ms (approx.) clock switch delay. The new INTOSC frequency will be stable immediately after the **eight** falling edges. The IOFS bit will remain set after clock switching occurs.

Note:	Caution must be taken when modifying the			
	IRCF bits using BCF or BSF instructions. It			
	is possible to modify the IRCF bits to a			
	frequency that may be out of the VDD			
	specification range; for example:			
	VDD = 2.0V and $IRCF = 111$ (8 MHz).			

7.2 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 **Timer1 Counter Operation**

FIGURE 7-1:

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 **Timer1 Operation in Synchronized Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

TIMER1 INCREMENTING EDGE

10.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register (SSPCON)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 10-1: SSPSTAT: MSSP STATUS (SPI MODE) REGISTER (ADDRESS 94h)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	<u>r mode:</u>						
	1 = Input d	ata sampled	at end of da	ata output ti f data outpu	me It time			
	0 = Input u SPI Slave	ala sampieu mode:	at midule o	i uala oulpu				
	SMP must	be cleared v	vhen SPI is	used in Slav	ve mode.			
bit 6	CKE: SPI	Clock Edge	Select bit					
	1 = Transn 0 = Transn	nit occurs on nit occurs on	transition fr transition fr	om active to	o Idle clock s active clock s	state state		
	Note:	Polarity of o	clock state is	s set by the	CKP bit (SS	PCON1<4>).	
bit 5	D/A: Data/	Address bit						
	Used in I ² 0	C mode only.						
bit 4	P: Stop bit							
	Used in I ² C	; mode only.	This bit is cle	ared when t	he MSSP m	odule is disa	bled, SSPEN	l is cleared.
bit 3	S: Start bit							
	Used in I ² C	C mode only.						
bit 2	R/W: Read	I/Write bit Inf	ormation					
	Used in I ² 0	C mode only.						
bit 1	UA: Updat	e Address bi	it					
	Used in I ² 0	C mode only.						
bit 0	BF: Buffer	Full Status b	oit (Receive	mode only)				
	1 = Receiv 0 = Receiv	e complete, e not comple	SSPBUF is ete, SSPBU	full F is empty				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	ʻ0'
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

PIC16F7X7

REGISTER 10-3: SSPSTAT: MSSP STATUS (I ² C MODE) REGISTER (ADDRESS 94h)											
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7					I	· · · · · ·	bit 0			
bit 7	SMP: Slew	v Rate Contro	ol bit								
	In Master of	or Slave mod	<u>le:</u>								
	1 = Slew rate	ate control di ate control ei	sabled for Sinabled for Hi	andard Spe ab-Speed r	eed mode (1 mode (400 k	00 kHz and	1 MHz)				
bit 6	CKE: SMB	Bus Select bit	habica ioi i ii F	gii Opecui	1000 (400 K	112)					
	In Master of 1 = Enable	n <u>Master or Slave mode:</u> 1 = Enable SMBus specific inputs D = Discher SMBus specific inputs									
bit 5	D/A : Data/	Address bit									
	In Master r Reserved.	mode:									
	In Slave m 1 = Indicat 0 = Indicat	<u>ode:</u> es that the la es that the la	ast byte rece ast byte rece	ived or tran	smitted was	data address					
bit 4	P: Stop bit		-								
	1 = Indicat 0 = Stop bi	es that a Sto it was not de	p bit has bee tected last	en detected	l last						
	Note:	Note: This bit is cleared on Reset and when SSPEN is cleared.									
bit 3	S: Start bit										
	 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last 										
	Note:	This bit is c	leared on Re	eset and wh	nen SSPEN	is cleared.					
bit 2	R/W: Read	d/Write bit Inf	ormation bit	(I ² C mode	only)						
	In Slave mode: 1 = Read 0 = Write										
	Note: This bit holds the R/\overline{W} bit information following the last address match. This bit is only valid from the address match to the next Start bit. Stop bit or not \overline{ACK} bit.										
<u>In Master mode:</u> 1 = Transmit is in progress											
	0 = Transmit is not in progress										
	Note: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.										
bit 1	UA: Updat	e Address bi	it (10-bit Slav	ve mode on	ily)						
	1 = Indicat 0 = Addres	es that the u ss does not n	ser needs to need to be up	update the dated	address in	the SSPADI	D register				
bit 0	BF: Buffer	Full Status b	oit								
	In Transmit mode: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty										
	In Receive mode:										
	1 = Data tr 0 = Data tr	1 = Data transmit in progress (does not include the \overline{ACK} and Stop bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and Stop bits), SSPBUF is empty									
	Legend:										
	R = Reada	able bit	W = Wi	ritable bit	U = Unin	plemented	bit, read as '	0'			
	-n = Value	at POR	'1' = Bit	is set	'0' = Bit i	s cleared	x = Bit is u	nknown			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCO N	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART	AUSART Transmit Register							0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	3aud Rate Generator Register						0000 0000	0000 0000	

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

© 2003-2013 Microchip Technology Inc.

13.2 Comparator Operation

A single comparator is shown in Figure 13-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 13-2 represent the uncertainty due to input offsets and response time.

13.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator operating mode. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 13-2).

13.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

13.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference for the comparators. **Section 14.0 "Comparator Voltage Reference Module"** contains a detailed description of the comparator voltage reference module that provides this signal. The internal reference signal is used when comparators are in mode CM<2:0> = 110 (Figure 13-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

13.4 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage, or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Section 18.0 "Electrical Characteristics").

13.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexors in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 13-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4:>).

- Note 1: When reading the Port register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
 - Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.
 - **3:** RA4 is an open collector I/O pin. When used as an output, a pull-up resistor is required.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-Down status bit, $\overline{\text{PD}}$, is cleared. Time-out status bit, $\overline{\text{TO}}$, is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS \rightarrow PC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				

RRF	Rotate Right f through Carry						
Syntax:	[<i>label</i>] RRF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						
	C Register f						

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k - (W) \rightarrow (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.					

SUBWF	Subtract W from f				
Syntax:	[<i>label</i>] SUBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) – (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

17.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

17.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

17.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

18.4 DC Characteristics: PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Typ† Max		Units	Conditions		
D060	lı∟	Input Leakage Current ^(2, 3) I/O ports	_	_	±1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance		
D061		MCLR. RA4/T0CKI	_	_	±5	uΑ	$VSS \leq VPIN \leq VDD$		
D063		OSC1	_	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration		
D080	Vol	Output Low Voltage I/O ports			0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2/CLKO (RC oscillator configuration)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C		
			—	—	0.6	V	IoL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
	Vон	Output High Voltage							
D090		I/O ports (Note 3)	Vdd - 0.7	_	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +125°C		
D092		OSC2/CLKO (RC oscillator configuration)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5 V, -40°C to +125°C		
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C		
D150*	Vod	Open-Drain High Voltage	_	—	12	V	RA4 pin		
		Capacitive Loading Specs on Output Pins							
D100	Cosc2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF			
D102	Св	SCL, SDA in I ² C™ mode	—		400	pF			
		Program Flash Memory							
D130	ЕΡ	Endurance	100	1000	—	E/W	25°C at 5V		
D131	Vpr	VDD for Read	2.0	—	5.5	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X7 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC16F7X7

FIGURE 18-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABI F 18-7.	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

40*	Тт0Н	T0CKI High Pulse		Characteristic					
		-	T0CKI High Pulse Width		0.5 TCY + 20	—		ns	Must also meet parameter 42
				With prescaler	10	_	_	ns	
41*	T⊤0L	T0CKI Low Pulse Width		No prescaler	0.5 TCY + 20	_	_	ns	Must also meet parameter 42
				With prescaler	10	-	_	ns	
42*	2* TTOP TOCKI		0CKI Period		Tcy + 40	_	_	ns	
		,		With prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 Tcy + 20			ns	Must also meet
			Synchronous, Prescaler = 2, 4, 8	PIC16F7X7	15			ns	parameter 47
				PIC16LF7X7	25			ns	
			Asynchronous	PIC16F7X7	30	_		ns	
				PIC16LF7X7	50			ns	
46*	TT1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5 Tcy + 20			ns	Must also meet
			Synchronous, Prescaler = 2, 4, 8	PIC16F7X7	15			ns	parameter 47
				PIC16LF7X7	25	_		ns	
			Asynchronous	PIC16F7X7	30			ns	
				PIC16LF7X7	50			ns	
47*	TT1P	T1CKI Input Period	Synchronous	PIC16F7X7	Greater of: 30 or <u>Tcץ + 40</u> N			ns	N = prescale value (1, 2, 4, 8)
				PIC16LF7X7	Greater of: 50 or <u>Tcʏ + 40</u> N	—		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16F7X7	60			ns	
				PIC16LF7X7	100	_		ns	
	F⊤1	Timer1 Oscillator I (oscillator enabled	ner1 Oscillator Input Frequency Range scillator enabled by setting bit T10SCEN)			—	200	kHz	
48	TCKEZTMR1	Delay from Extern	Delay from External Clock Edge to Timer Increment			—	7 Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-17: △IPD BOR vs. VDD, -40°C TO +125°C (SLEEP MODE, BOR ENABLED AT 2.00V-2.16V)

PIC16F7X7

FIGURE 19-19: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

FIGURE 19-23: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

Example

20.0 PACKAGING INFORMATION

20.1 Package Marking Information

28-Lead SPDIP (.300")

For the most current package drawings, please see the Microchip Packaging Specification located at

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

http://www.microchip.com/packaging

INCHES Units **Dimension Limits** MIN NOM MAX Number of Pins 40 Ν Pitch 100 BSC е .250 Top to Seating Plane А Molded Package Thickness A2 .125 .195 .015 Base to Seating Plane A1 _ _ Shoulder to Shoulder Width Е .590 .625 _ Molded Package Width .485 .580 E1 _ **Overall Length** 1.980 2.095 D _ Tip to Seating Plane .115 .200 L _ Lead Thickness .008 .015 С _ Upper Lead Width .030 .070 b1 _ Lower Lead Width b .014 .023 _ Overall Row Spacing § eВ .700 _ _

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B