

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf747-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIE⁽¹⁾ ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE bit 7 bit 0 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear. bit 6 ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt bit 5 RCIE: AUSART Receive Interrupt Enable bit 1 = Enables the AUSART receive interrupt 0 = Disables the AUSART receive interrupt bit 4 TXIE: AUSART Transmit Interrupt Enable bit 1 = Enables the AUSART transmit interrupt 0 = Disables the AUSART transmit interrupt bit 3 SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

2.2.2.5 PIR1 Register

bit 5

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	
bit 7							bit 0	

- bit 7 **PSPIF:** Parallel Slave Port Read/Write Interrupt Flag bit⁽¹⁾
 - 1 = A read or a write operation has taken place (must be cleared in software)
 - 0 =No read or write has occurred

Note: PSPIF is reserved on 28-pin devices; always maintain this bit clear.

- bit 6 ADIF: A/D Converter Interrupt Flag bit
 - 1 = An A/D conversion is completed (must be cleared in software)
 - 0 = The A/D conversion is not complete
 - RCIF: AUSART Receive Interrupt Flag bit
 - 1 = The AUSART receive buffer is full
 - 0 = The AUSART receive buffer is empty
- bit 4 **TXIF**: AUSART Transmit Interrupt Flag bit
 - 1 = The AUSART transmit buffer is empty
 - 0 = The AUSART transmit buffer is full
- bit 3 **SSPIF**: Synchronous Serial Port (SSP) Interrupt Flag bit
 - 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI:
 - A transmission/reception has taken place.
 - I²C Slave:
 - A transmission/reception has taken place.
 - I²C Master:

A transmission/reception has taken place. The initiated Start condition was completed by the SSP module. The initiated Stop condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A Start condition occurred while the SSP module was Idle (multi-master system). A Stop condition occurred while the SSP module was Idle (multi-master system).

- 0 = No SSP interrupt condition has occurred
- bit 2 **CCP1IF**: CCP1 Interrupt Flag bit
 - Capture mode:
 - 1 = A TMR1 register capture occurred (must be cleared in software)
 - 0 = No TMR1 register capture occurred
 - Compare mode:
 - 1 = A TMR1 register compare match occurred (must be cleared in software)
 - 0 = No TMR1 register compare match occurred
 - PWM mode:
 - Unused in this mode.
- bit 1 **TMR2IF**: TMR2 to PR2 Match Interrupt Flag bit
 - 1 = TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred
- bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit
 - 1 = TMR1 register overflowed (must be cleared in software)
 - 0 = TMR1 register did not overflow

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

3.3 Reading the Flash Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit, RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction; therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code-Protect

Flash program memory has its own code-protect mechanism. External read and write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal Flash program memory, regardless of the state of the code-protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATH

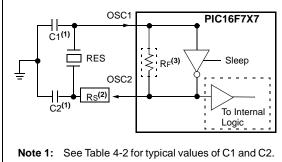

EXAMPLE 3-1: FLASH PROGRAM READ

TABLE 3-1:	REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all c Res	other
10Dh	PMADR	EEPROM A	EEPROM Address Register Low Byte							xxxx	xxxx	uuuu	uuuu
10Fh	PMADRH	-	—	—	_	EEPRON	Address	Register H	ligh Byte		xxxx	u	uuuu
10Ch	PMDATA	EEPROM D	EEPROM Data Register Low Byte							xxxx	xxxx	uuuu	uuuu
	PMDATH			EEPR	OM Data	a Register	High Byte	9		xx	xxxx	uu	uuuu
18Ch	PMCON1	reserved ⁽¹⁾	_	_	_	_		_	RD	1	0	1	0

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used during Flash access. **Note 1:** This bit always reads as a '1'.

FIGURE 4-2: CERAMIC RESONATOR OPERATION (HS OR XT OSC CONFIGURATION)

- **2:** A series resistor (Rs) may be required.
- 3: RF varies with the resonator chosen (typically between 2 M Ω to 10 M Ω).

TABLE 4-2: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:									
Mode Freq OSC1 OSC2									
XT	455 kHz	56 pF	56 pF						
	2.0 MHz	47 pF	47 pF						
	4.0 MHz	33 pF	33 pF						
HS	8.0 MHz	27 pF	27 pF						
	16.0 MHz	22 pF	22 pF						

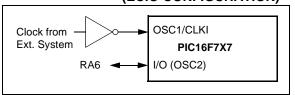
Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of Rs is 330Ω.


4.3 External Clock Input

The ECIO Oscillator mode requires an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the ECIO Oscillator mode, the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 4-3 shows the pin connections for the ECIO Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

5.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

5.1 PORTA and the TRISA Register

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

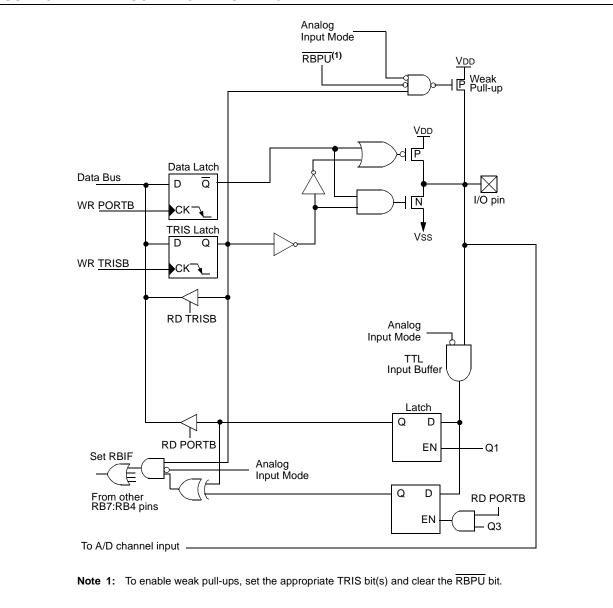
Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in Configuration Register 1H (see **Section 15.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA3:RA0 and RA5 as A/D converter inputs is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1). Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register.

Note:	On a Power-on Reset, RA5 and RA3:RA0
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.


The TRISA register controls the direction of the RA pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

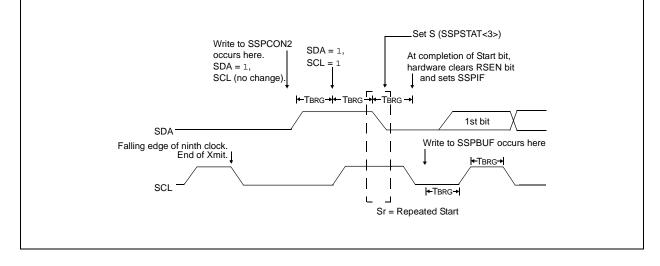
BCF BCF	STATUS,		; ; Bank0
-		ICI I	,
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x0F		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6>are always
			; read as '0'.

PIC16F7X7

10.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

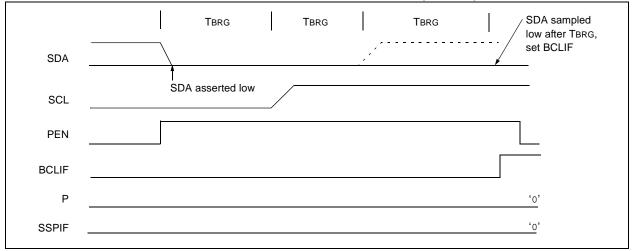

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

10.4.9.1 WCOL Status Flag

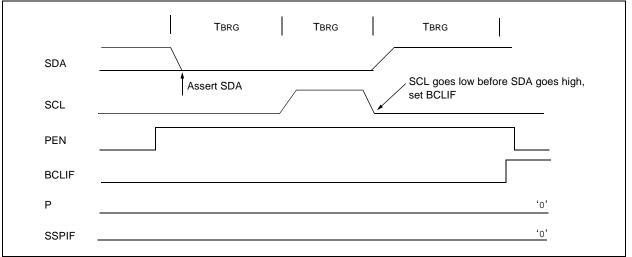
If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 10-20: REPEATED START CONDITION WAVEFORM


10.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 10-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 10-32).

FIGURE 10-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 10-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

11.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is one of the two serial I/O modules. (AUSART is also known as a Serial Communications Interface or SCI.) The AUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The AUSART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The AUSART module also has a multi-processor communication capability using 9-bit address detection.

REGISTER 11-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

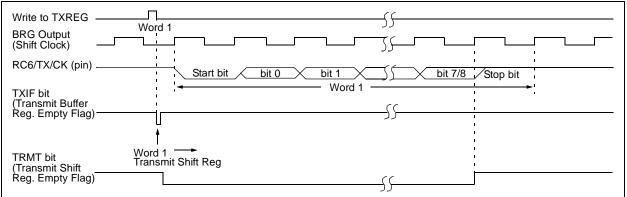
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	, R-1	R/W-0		
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D		
	bit 7							bit 0		
bit 7	CSRC: Clock Source Select bit Asynchronous mode:									
	Don't care.									
	<u>Synchronous</u> 1 = Master m		generated i	nternally from	n BRG)					
	0 = Slave mo									
bit 6	TX9 : 9-bit Tr	ansmit Enal	ole bit							
	1 = Selects 0 = Selects									
bit 5	TXEN: Trans	mit Enable	bit							
	1 = Transmit 0 = Transmit									
	Note: S	BREN/CREM	V overrides	TXEN in Syı	nc mode.					
bit 4	SYNC: AUS	ART Mode S	Select bit							
	1 = Synchron 0 = Asynchron)							
bit 3	Unimpleme	nted: Read	as '0'							
bit 2	BRGH: High	Baud Rate	Select bit							
	Asynchronou									
	1 = High spe 0 = Low spe									
	Synchronous									
	Unused in th									
bit 1	TRMT: Trans		egister Statu	s bit						
	1 = TSR emp 0 = TSR full	oty								
bit 0	TX9D: 9th bit of Transmit Data, can be Parity bit									
	Legend:]		
	R = Readabl	e hit	M = M r	itable bit	U = Unimple	amented h	it read as 'C	,		
	-n = Value at		'1' = Bit		'0' = Bit is c		x = Bit is un			
			-							

Baud Rate (K)	Fosc = 20 MHz				Fosc = 16 M	Hz	Fosc = 10 MHz		
	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	—	_	_	—	_	_	_	_	_
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	_	255	0.977	_	255	0.610	—	255
LOW	312.500	_	0	250.000	_	0	156.250	_	0

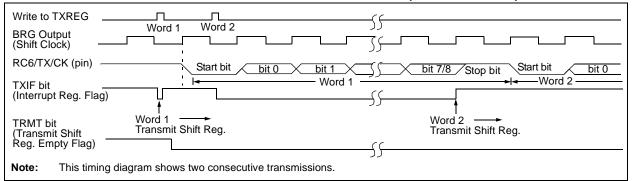
David		Fosc = 4 MH	łz	Fosc = 3.6864 MHz				
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)		
0.3	0.300	0	207	0.3	0	191		
1.2	1.202	0.17	51	1.2	0	47		
2.4	2.404	0.17	25	2.4	0	23		
9.6	8.929	6.99	6	9.6	0	5		
19.2	20.833	8.51	2	19.2	0	2		
28.8	31.250	8.51	1	28.8	0	1		
33.6	_	_	_	_	_	_		
57.6	62.500	8.51	0	57.6	0	0		
HIGH	0.244	_	255	0.225	_	255		
LOW	62.500	_	0	57.6	_	0		

TABLE 11-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

	Fosc = 20 MHz			Fosc = 16 MHz			Fosc = 10 MHz			
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	—	_	_	—	_	_		_	_	
1.2	_	_	_	—	_	_	_	_	_	
2.4	—	_	_	—	_	_	2.441	1.71	255	
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64	
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31	
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21	
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18	
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10	
HIGH	4.883	_	255	3.906	_	255	2.441	_	255	
LOW	1250.000	_	0	1000.000	_	0	625.000	_	0	


Baud		Fosc = 4 MH	z	Fosc = 3.6864 MHz				
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)		
0.3	_	_	_	_	_	—		
1.2	1.202	0.17	207	1.2	0	191		
2.4	2.404	0.17	103	2.4	0	95		
9.6	9.615	0.16	25	9.6	0	23		
19.2	19.231	0.16	12	19.2	0	11		
28.8	27.798	3.55	8	28.8	0	7		
33.6	35.714	6.29	6	32.9	2.04	6		
57.6	62.500	8.51	3	57.6	0	3		
HIGH	0.977	—	255	0.9	_	255		
LOW	250.000	_	0	230.4	_	0		

When setting up an Asynchronous Transmission, follow these steps:


- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

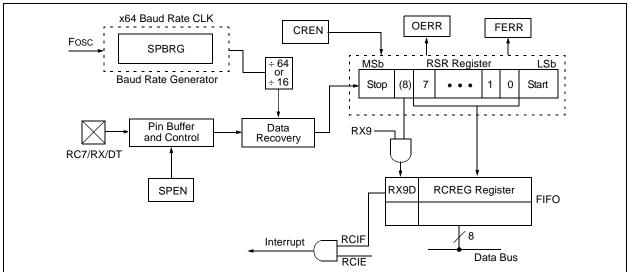
- 5. Enable the transmission by setting bit TXEN which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

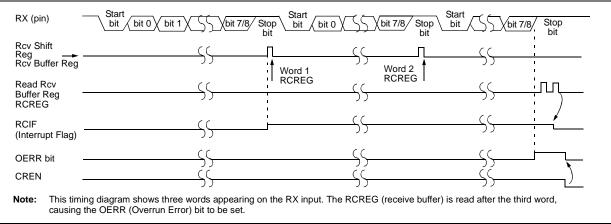
TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	REG AUSART Transmit Data Register					0000 0000	0000 0000			
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	tor Registe	er					0000 0000	0000 0000

Legend: x = unknown, — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
 Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.


11.2.2 AUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 11-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.


Once Asynchronous mode is selected, reception is enabled by setting bit, CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit, OERR, has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing Error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values; therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

TABLE 15-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	uuuu uuuu	<u>uuuu</u> uuuu
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	 uuuu uuuu	
PORTA	xx0x 0000	uu0u 0000	นนนน นนนน
PORTB	xx00 0000	uu00 0000	นนนน นนนน
PORTC	XXXX XXXX	<u>uuuu</u> uuuu	นนนน นนนน
PORTD	XXXX XXXX	นนนน นนนน	นนนน นนนน
PORTE (PIC16F737/767)	x	u	u
PORTE (PIC16F747/777)	x000	u000	uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	000- 0-00	000- 0-00	uuu- u-uu
TMR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	-000 0000	-uuu uuuu	-uuu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
SSPCON2	0000 0000	0000 0000	uuuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	00 0000	00 0000	uu uuuu
CCP2CON	00 0000	00 0000	uu uuuu
CCP3CON	00 0000	00 0000	uuuu uuuu
CCPR2L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR2H	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR3L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR3H	XXXX XXXX	uuuu uuuu	uuuu uuuu
RCSTA	0000 000x	0000 000x	uuuu uuuu
TXREG	0000 0000	0000 0000	uuuu uuuu
RCREG	0000 0000	0000 0000	<u>uuuu</u> uuuu
ADRESH	xxxx xxxx	uuuu uuuu	 uuuu uuuu
ADCON0	0000 0000	0000 0000	 uuuu uuuu
OPTION_REG	1111 1111	1111 1111	uuuu uuuu

Legend: u = unchanged, x = unknown, — = unimplemented bit, read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and PR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 15-3 for Reset value for specific condition.

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) $-1 \rightarrow$ (destination); skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 TCY instruction.					

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2 TCY instruction.

GOTO	Unconditional Branch						
Syntax:	[<i>label</i>] GOTO k						
Operands:	$0 \leq k \leq 2047$						
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<4:3> \rightarrow PC<12:11>						
Status Affected:	None						
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits<10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.						

IORLW	Inclusive OR Literal with W						
Syntax:	[<i>label</i>] IORLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .OR. $k \rightarrow$ (W)						
Status Affected:	Z						
Description:	The contents of the W register are ORed with the eight-bit literal 'k'. The result is placed in the W register.						

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

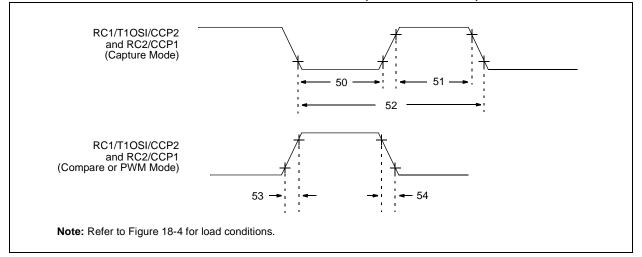
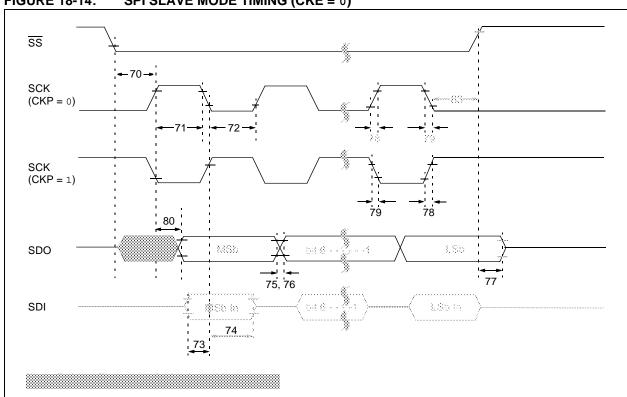
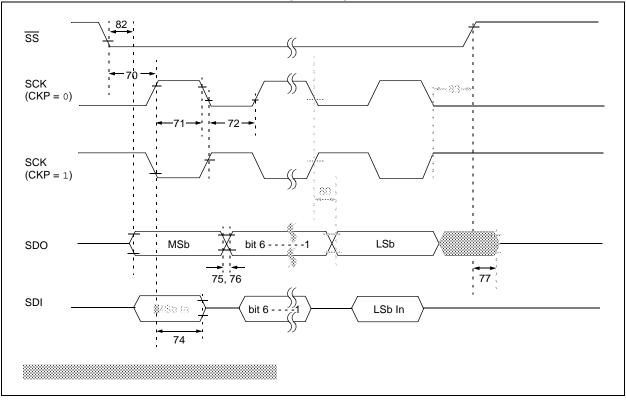



TABLE 18-8: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Symbol	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1, CCP2 and	No prescaler		0.5 Tcy + 20	—	—	ns	
		CCP3 Input Low	With prescaler	PIC16F7X7	10	_	—	ns	
		Time		PIC16LF7X7	20	_	—	ns	
51*	51* TccH CCP1, CCP2 ar		No prescaler		0.5 TCY + 20	_	—	ns	
		CCP3 Input High Time	With prescaler	PIC16F7X7	10	_	—	ns	
				PIC16LF7X7	20		_	ns	
52*	TCCP	CCP1, CCP2 and (od	<u>3 Tcy + 40</u> N	—		ns	N = prescale value (1, 4 or 16)	
53*	TCCR	CCP1, CCP2 and CCP3 Output		PIC16F7X7	—	10	25	ns	
		Rise Time	Rise Time		—	25	50	ns	
54*	TCCF	CCP1, CCP2 and CCP3 Output Fall Time		PIC16F7X7	—	10	25	ns	
				PIC16LF7X7	_	25	45	ns	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

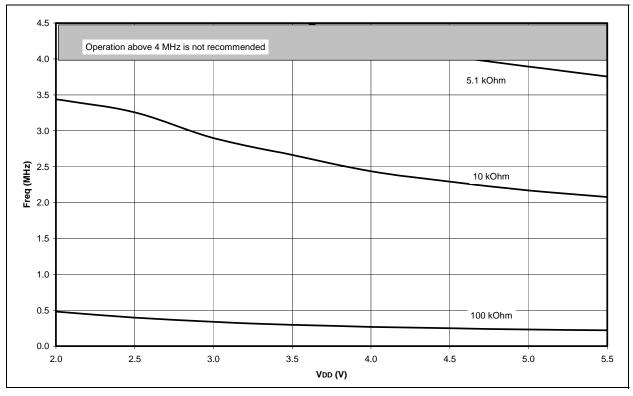
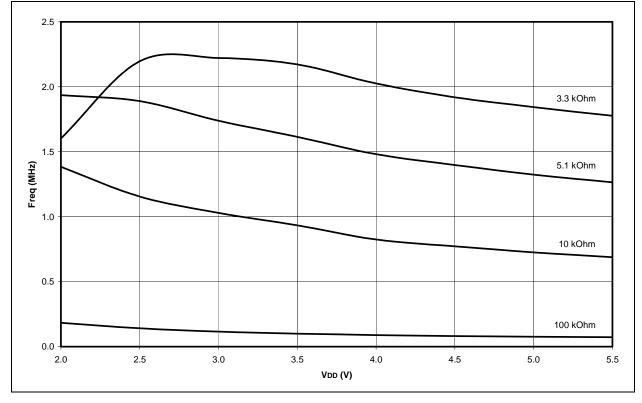


FIGURE 18-14: SPI SLAVE MODE TIMING (CKE = 0)


SPI SLAVE MODE TIMING (CKE = 1) FIGURE 18-15:

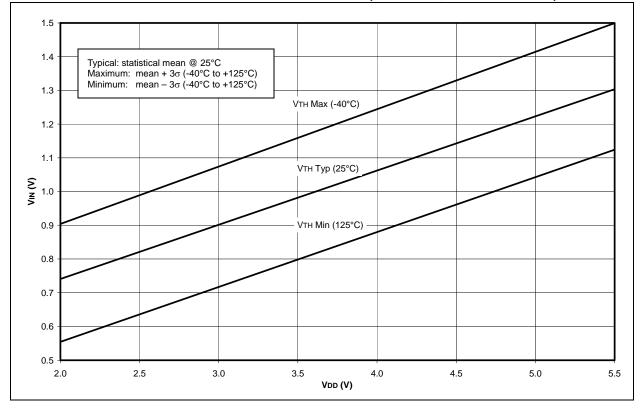
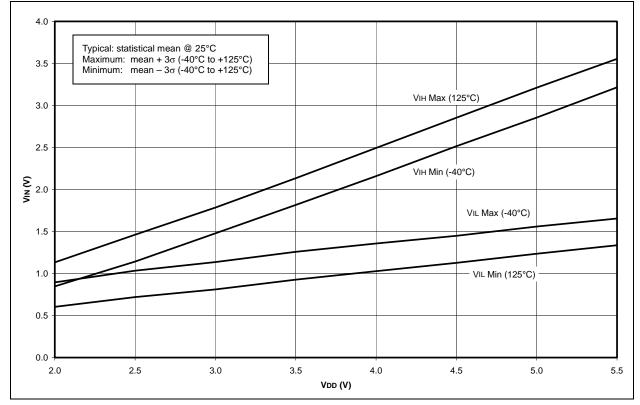
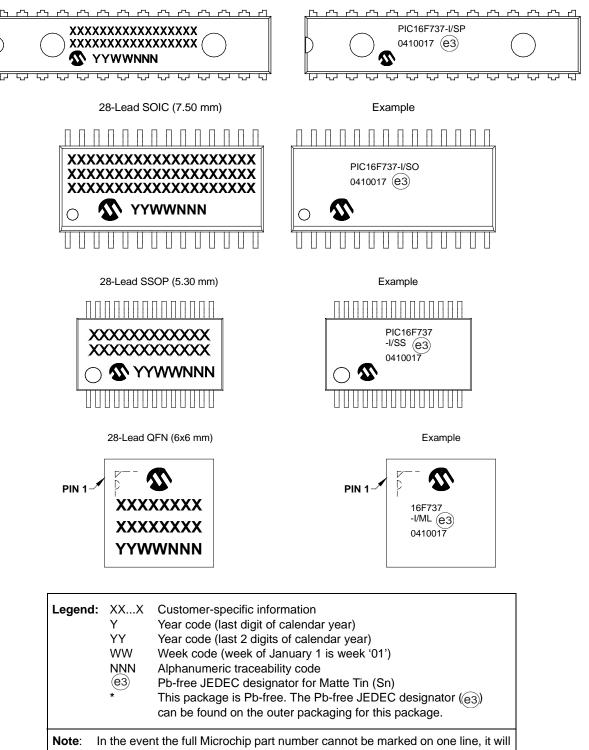


FIGURE 19-12: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, +25°C)



DS30498D-page 240



Example

20.0 PACKAGING INFORMATION

20.1 Package Marking Information

28-Lead SPDIP (.300")

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support