

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf747t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIE⁽¹⁾ ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE bit 7 bit 0 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear. bit 6 ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt bit 5 RCIE: AUSART Receive Interrupt Enable bit 1 = Enables the AUSART receive interrupt 0 = Disables the AUSART receive interrupt bit 4 TXIE: AUSART Transmit Interrupt Enable bit 1 = Enables the AUSART transmit interrupt 0 = Disables the AUSART transmit interrupt bit 3 SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ADDRESS 0Dh)

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0						
	OSFIF	CMIF	LVDIF	—	BCLIF		CCP3IF	CCP2IF						
	bit 7				L		J	bit 0						
bit 7	OSFIF: Os	cillator Fail	nterrupt Flag	j bit										
	1 = System	n oscillator fa	ailed, clock in	put has char	nged to INTR	RC (must be	e cleared in	software)						
5.4 C		CMIF: Comparator Interrupt Flag bit												
DILO	1 = Comparator input has changed (must be cleared in software)													
	0 = Compa	arator input h	has not chang	aed	dieu in son.	Valej								
bit 5	LVDIF: Lov	w-Voltage De	etect Interrup	ot Flag bit										
	1 = The su	pply voltage	has fallen be	low the spec	ified LVD vo	ltage (must	be cleared	in software)						
	0 = The su	pply voltage	is greater the	en the specif	ied LVD volf	tage								
bit 4	Unimplem	ented: Read	d as '0'											
bit 3	BCLIF: Bu	s Collision Ir	nterrupt Flag	bit		2014								
	1 = A bus (collision has	occurred in t	the SSP whe	n configured	for I [∠] C Ma	ster mode							
hit 9		S COIlISION Ha												
DIL ∠ hi+ 1	CUMUPIEN		Jas ∪ st Elag hit											
DICI	Capture m	nde	JI Flay Di											
	1 = A TMR	1 register ca	apture occurr	ed (must be	cleared in s	oftware)								
	0 = No TM	R1 register c	capture occur	rred										
	Compare n	<u>node:</u>												
	1 = A W 0 = No TM	l1 register co IR1 register (ompare maio	n occurred (i ich occurred	NUST DE Ciea	Ired in Soliw	/are)							
	P <u>WM mod</u>	e:	Joinpare	011 0000										
	Unused in	this mode.												
bit 0	CCP2IF: C	CP2 Interrup	pt Flag bit											
	Capture me	ode:		1 (·· \								
	1 = A TIVIK 0 = No TM	1 register ca R1 register c	apture occurre capture occur	ed (must de rred	cleared in so	oftware)								
	Compare n	<u>node:</u>												
	1 = A IMK 0 = No TM	1 register co	ompare matcr	h occurred (n	nust be clea	ared in softw	/are)							
	PWM mod	A le	Julipare mat	UI UUUUIIUu										
	Unused.	<u>u.</u>												
	Legena:	-l- L :4	۱۸/ _ ۱۸	/ it-bla bit		-lamontod	Lit mod or	(0)						
	R = Reauc		vv = vv	/fitable bit	0 = 0	plementeu	DIL, IEAU as	. 0						

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note, *AN556 "Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F7X7 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.2: There are no instructions/mnemonics

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

PIC16F7X7 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Note:	The	contents	of	the	PCLA	ΤН	are					
	uncha	anged afte	r a	RETU	RN or	RET	FIE					
	instruction is executed. The user must set											
	up the PCLATH for any subsequent CALLS											
	or GO	TO S .										

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG BCF	0x500 PCLATH, 4	4
	BSF	PCLATH,	3 ;Select page 1 ;(800h-FFFh)
	CALL :	SUB1_P1	;Call subroutine in ;page 1 (800h-FFFh)
SUB1_P1	ORG	0x900	;page 1 (800h-FFFh)
	:		;called subroutine
	:		;page 1 (800h-FFFh)
RETURN	:		;return to Call ;subroutine in page 0 ;(000h-7FFh)

3.0 READING PROGRAM MEMORY

The Flash program memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

bit bit bit

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word which holds the 13-bit address of the Flash location being accessed. These devices can have up to 8K words of program Flash, with an address range from 0h to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as '0's.

3.1 PMADR

The address registers can address up to a maximum of 8K words of program Flash.

When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADR register. The upper Most Significant bits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit, RD, initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
	reserved	_	—	—	—	_	—	RD
	bit 7							bit 0
7	Reserved:	Read as '1'						
6-1	Unimplem	ented: Read	as '0'					
0	RD: Read (Control bit						
	1 = Initiate in softv	s a Flash re vare.	ad, RD is cle	eared in har	dware. The I	RD bit can o	only be set (r	ot cleared)
	0 = Flash r	ead comple	ted					
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'
	-n = Value	at POR	'1' = B	lit is set	'0' = Bit i	s cleared	x = Bit is u	Inknown

3.3 Reading the Flash Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit, RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction; therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code-Protect

Flash program memory has its own code-protect mechanism. External read and write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal Flash program memory, regardless of the state of the code-protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATH

EXAMPLE 3-1: FLASH PROGRAM READ

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on: BOR	Valu all c Res	e on other sets
10Dh	PMADR	EEPROM A	Address	Regist	er Low E	Byte				xxxx	xxxx	uuuu	uuuu
10Fh	PMADRH	—		_		EEPRON	Address	Register H	ligh Byte		xxxx	u	uuuu
10Ch	PMDATA	EEPROM [Data Re	gister L	ow Byte					xxxx	xxxx	uuuu	uuuu
10Eh	PMDATH	—		EEPR	OM Data	a Register	High Byte	9		xx	xxxx	uu	uuuu
18Ch	PMCON1	reserved ⁽¹⁾	_		_	_		_	RD	1	0	1	0

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used during Flash access. **Note 1:** This bit always reads as a '1'.

4.6.3 CLOCK TRANSITION AND WDT

When clock switching is performed, the Watchdog Timer is disabled because the Watchdog Ripple Counter is used as the Oscillator Start-up Timer (OST).

Note: The OST is only used when switching to XT, HS and LP Oscillator modes.

Once the clock transition is complete (i.e., new oscillator selection switch has occurred), the Watchdog Counter is re-enabled with the Counter Reset. This allows the user to synchronize the Watchdog Timer to the start of execution at the new clock frequency.

REGISTER 4-2: OSCCON: OSCILLATOR CONTROL REGISTER (ADDRESS 8Fh)

U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
—	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	IOFS	SCS1	SCS0
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6-4 IRCF<2:0>: Internal RC Oscillator Frequency Select bits
 - 000 = 31.25 kHz
 - 001 = 125 kHz 010 = 250 kHz
 - O11 = 500 kHz
 - 100 = 1 MHz
 - 101 = 2 MHz
 - 110 = 4 MHz
 - 111 = 8 MHz

bit 3 **OSTS:** Oscillator Start-up Time-out Status bit⁽¹⁾

1 = Device is running from the primary system clock

- 0 = Device is running from the Timer1 oscillator (T1OSC) or INTRC as a secondary system clock
 - Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the oscillator mode.
- bit 2 IOFS: INTOSC Frequency Stable bit
 - 1 = Frequency is stable
 - 0 = Frequency is not stable
- bit 1-0 SCS<1:0>: Oscillator Mode Select bits
 - 00 = Oscillator mode defined by FOSC<2:0>
 - 01 = T1OSC is used for system clock
 - 10 = Internal RC is used for system clock
 - 11 = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2 **PORTB and the TRISB Register**

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

PORTB pins are multiplexed with analog inputs. The operation of each pin is selected by clearing/setting the appropriate control bits in the ADCON1 register.

Note:	On a Power-on Reset, these pins are
	configured as analog inputs and read as
	ʻ0'.

Four of the PORTB pins (RB7:RB4) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB port change interrupt with flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Application Note *AN552* "*Implementing Wake-up on Key Stroke*" (DS00552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>). RB0/INT is discussed in detail in **Section 15.15.1 "INT Interrupt"**.

PORTB is multiplexed with several peripheral functions (see Table 5-3). PORTB pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISB as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

PIC16F7X7

		R/W-1	R/W-1	R/W-1	、 R/W-1	R/W-1	, R/W-1	R/W-1					
	RBPU	INTEDG	TOCS	T0SE	PSA ⁽¹⁾	PS2	PS1	PS0					
	bit 7							bit 0					
bit 7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled												
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin												
bit 5	TOCS : TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)												
bit 4	TOSE : TM 1 = Increm 0 = Increm	R0 Source Ed nent on high-t nent on low-to	dge Select b o-low transit o-high transit	it ion on T0Ck ion on T0Ck	(I pin (I pin								
bit 3	 PSA: Prescaler Assignment bit⁽¹⁾ 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module Note 1: To avoid an unintended device Reset, the instruction sequence shown in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must 												
bit 2-0	PS<2:0>: Bit Value 000 001 010 011 100 101 110 111	Prescaler Ra <u>TMR0 Rate</u> 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	te Select bits WDT Rate 1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	5									
	Legend: R = Reada -n = Value	it, read as ' x = Bit is u	0' nknown										

REGISTER 6-1: OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 181h)

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

The Timer1 oscillator can be used as a secondary clock source in low-power modes. When the T1RUN bit is set along with SCS<1:0> = 01, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a Timer
- as a Synchronous Counter
- as an Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.4** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC0/T1OSO/T1CKI and RC1/T1OSI/CCP2 pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

7.2 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 **Timer1 Counter Operation**

FIGURE 7-1:

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized **Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

TIMER1 INCREMENTING EDGE

10.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times, as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

10.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 4h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch

must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 10-4: SLAVE SYNCHRONIZATION WAVEFORM

Baud		Fosc = 20 M	Hz		Fosc = 16 M	Hz		Fosc = 10 M	Hz
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	—	-	—	—	_	_	-	-	—
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	_	255	0.977	_	255	0.610	_	255
LOW	312.500	_	0	250.000	_	0	156.250	_	0

Paud		Fosc = 4 MH	Iz	F	osc = 3.6864 I	MHz
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	0.300	0	207	0.3	0	191
1.2	1.202	0.17	51	1.2	0	47
2.4	2.404	0.17	25	2.4	0	23
9.6	8.929	6.99	6	9.6	0	5
19.2	20.833	8.51	2	19.2	0	2
28.8	31.250	8.51	1	28.8	0	1
33.6	—		—	—	—	—
57.6	62.500	8.51	0	57.6	0	0
HIGH	0.244	_	255	0.225	_	255
LOW	62.500	_	0	57.6	_	0

TABLE 11-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

David		Fosc = 20 MH	łz		Fosc = 16 M	Hz		Fosc = 10 Mł	łz
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	_	_	_	_	_	_	_	_	_
1.2	_	_	_	—	—	_	—	_	_
2.4	—	_	—	—	_	—	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	_	255	3.906	_	255	2.441	_	255
LOW	1250.000	_	0	1000.000	_	0	625.000	_	0

Boud		Fosc = 4 MH	z	Fo	osc = 3.6864 N	/Hz
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	_	_	_	_	_	_
1.2	1.202	0.17	207	1.2	0	191
2.4	2.404	0.17	103	2.4	0	95
9.6	9.615	0.16	25	9.6	0	23
19.2	19.231	0.16	12	19.2	0	11
28.8	27.798	3.55	8	28.8	0	7
33.6	35.714	6.29	6	32.9	2.04	6
57.6	62.500	8.51	3	57.6	0	3
HIGH	0.977	_	255	0.9	_	255
LOW	250.000	_	0	230.4	_	0

11.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

When setting up an Asynchronous Reception with Address Detect enabled:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

FIGURE 11-6: AUSART RECEIVE BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCO N	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	AUSART	AUSART Transmit Register						0000 0000	0000 0000	
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register					0000 0000	0000 0000		

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

© 2003-2013 Microchip Technology Inc.

f,b

Bit 'b' in register 'f' is cleared.

16.2 Instruction Descriptions

ADDWF

Syntax: Operands:

ADDLW	Add Literal and W		
Syntax:	[label] ADDLW k		
Operands:	$0 \le k \le 255$		
Operation:	$(W) + k \to (W)$		
Status Affected:	C, DC, Z		
Description:	The contents of the W register are added to the eight-bit literal 'k and the result is placed in the W register.		

are added to the eight-bit literal 'k' and the result is placed in the W register.	Description:
Add W and f	BSF
[label] ADDWF f,d	Syntax:
$0 \le f \le 127$ $d \in [0,1]$	Operands:
(W) + (f) \rightarrow (destination)	Operation:

BCF

Syntax:

Operands:

Operation:

Status Affected:

Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

Bit Clear f

[label] BCF

 $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$

 $0 \rightarrow (f < b >)$

None

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are ANDed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

18.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)0.	3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +13.5V
Voltage on RA4 with respect to Vss	0 to +12V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB and PORTE (combined) (Note 3)	
Maximum current sourced by PORTA, PORTB and PORTE (combined) (Note 3)	
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD – \sum IOH} + \sum {(VDD – VOH) x	$IOH\} + \sum(VOL \times IOL)$
 Voltage spikes at the MCLR pin may cause latch-up. A series resistor of greater than 1 to pull MCLR to VDD, rather than tying the pin directly to VDD. 	$k\Omega$ should be used

3: PORTD and PORTE are not implemented on the PIC16F737/767 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F7X7

FIGURE 18-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABI F 18-7.	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

40*	Тт0Н	T0CKI High Pulse		Characteristic					
			Width	No prescaler	0.5 TCY + 20	—		ns	Must also meet
				With prescaler	10	_	_	ns	parameter 42
41*	TT0L	T0CKI Low Pulse	Width	No prescaler	0.5 TCY + 20	_	_	ns	Must also meet
			1		10	-	_	ns	parameter 42
42*	T⊤0P	T0CKI Period		No prescaler	Tcy + 40	_	_	ns	
				With prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, Pre	scaler = 1	0.5 Tcy + 20			ns	Must also meet
			Synchronous,	PIC16F7X7	15			ns	parameter 47
			Prescaler = 2, 4, 8	PIC16LF7X7	25			ns	
			Asynchronous	PIC16F7X7	30	_		ns	
				PIC16LF7X7	50			ns]
46*	TT1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5 Tcy + 20			ns	Must also meet
			Synchronous, Prescaler = 2, 4, 8	PIC16F7X7	15			ns	parameter 47
				PIC16LF7X7	25	_	_	ns	
			Asynchronous	PIC16F7X7	30			ns	
				PIC16LF7X7	50			ns	
47*	TT1P	T1CKI Input Period	Synchronous	PIC16F7X7	Greater of: 30 or <u>Tcץ + 40</u> N			ns	N = prescale value (1, 2, 4, 8)
		Asynch		PIC16LF7X7	Greater of: 50 or <u>Tcʏ + 40</u> N	—		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16F7X7	60			ns	
				PIC16LF7X7	100	_		ns	
	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)		DC	—	200	kHz		
48	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param. No.	Symbol	Characte	eristic	Min	Мах	Units	Conditions
100*	Тнідн	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5 TCY	_		
101*	TLOW	Clock Low Time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5 TCY	_		
102*	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μs	Start condition
91*	THD:STA	Start Condition Hold	100 kHz mode	4.0	—	μs	After this period, the first
		Time	400 kHz mode	0.6	—	μs	clock pulse is generated
106*	THD:DAT	Data Input Hold	100 kHz mode	0	—	ns	
		Time	400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data Input Setup	100 kHz mode	250	_	ns	(Note 2)
		lime	400 kHz mode	100	—	ns	
92*	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	
		Setup Time	400 kHz mode	0.6	—	μS	
109*	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
	Св	Bus Capacitive Load	ling	—	400	pF	

TABLE 18-12: I [∠] C™ BUS DATA REQUIREMENT

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system but the requirement, TsU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

*

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

Characteristic	PIC16C7X	PIC16F87X	PIC16F7X7
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	16 or 17
Communication	PSP, USART, SSP (SPI, I ² C™ Master/Slave)	PSP, AUSART, MSSP (SPI, I ² C Master/Slave)	PSP, AUSART, MSSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz	20 MHz
A/D	8-bit	10-bit	10-bit
CCP	2	2	3
Program Memory	4K, 8K EPROM	4K, 8K Flash (1,000 E/W cycles)	4K, 8K Flash (100 E/W cycles)
RAM	192, 368 bytes	192, 368 bytes	368 bytes
EEPROM Data	None	128, 256 bytes	None
Other	_	In-Circuit Debugger, Low-Voltage Programming	In-Circuit Debugger

PIC16F7X7

PORTC	10 13
Accoriated Pagistors	10, 10
RC3/SCK/SCL Pin	107
RC6/TX/CK Pin	134
RC7/RX/DT Pin1	134, 135
TRISC Register	65, 133
PORTC Register	65
PORTD	14
Associated Registers	67
Associated Registers	
PORTD Register	67
TRISD Register	67
PORTD Register	67
PORTE	14
Analog Port Pins	68
Approximated Programmer	00
Input Buffer Full Status (IBF Bit)	
Input Buffer Overflow (IBOV Bit)	69
PORTE Register	
PSP Mode Select (PSPMODE Bit)	67, 68
RE0/RD/AN5 Pin	
	83
REZ/CS/AN7 PIN	
TRISE Register	
PORTE Register	
Postscaler, WDT	
Assignment (PSA Bit)	
Rate Select (PS2 PS0 Bits)	22
Power Down Mode (Sloop)	100
Power-Down Mode (Sleep)	190
Power-Down Mode. See Sleep.	
Power-Managed Modes	
RC_RUN	41
RC_RUN SEC RUN	41 42
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source	41 42 43
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR) 169, 172, 173, 1	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN. SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178
RC_RUN SEC_RUN. SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR) POR Status (POR Bit)	
RC_RUN SEC_RUN. SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN. SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR) 169, 172, 173, 1 POR Status (POR Bit) Power Control/Status (PCON) Register Power-Down (PD Bit) Time-out (TO Bit) Power-up Timer (PWRT)	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 .21, 172 169, 173 85
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 .21, 172 169, 173 85
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN. SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR) POR Status (POR Bit)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 179 32 15 15 15 15 15
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 15 32 15 29 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 15 32 31 31 32 31 31 32 31 31 32 31 32 31 32 31 32
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 15 32 15 32 31 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 179 32 15 32 31 31 31 32
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 .21, 172 169, 173 85 22 22 179 32 15 32 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 21, 172 169, 173 85 22 179 32 179 32 31 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 15 32 31 31 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 31 31 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 31 31 31 31 31 31 31
RC_RUN SEC_RUN/RC_RUN to Primary Clock Source Power-on Reset (POR)	41 42 43 179, 180 28 178 172 21, 172 169, 173 85 22 22 179 32 15 32 31 31 31 31 31 31 31

Program Verification	192
Programming, Device Instructions	193
PUSH	29
D	
ĸ	
RA0/AN0 Pin	8, 11
RA1/AN1 Pin	8, 11
RA2/AN2/VREF-/CVREF Pin	8, 11
RA3/AN3/VREF+ Pin	8, 11
RA4/T0CKI/C1OUT Pin	8, 11
RA5/AN4/LVDIN/SS/C2OUT Pin	8, 11
RAM. See Data Memory.	
RB0/INT/AN12 Pin	9, 12
RB1/AN10 Pin	9, 12
RB2/AN8 Pin	9, 12
RB3/CCP2/AN9 Pin	9, 12
RB4/AN11 Pin	9, 12
RB5/AN13/CCP3 Pin	9, 12
RB6/PGC Pin	9, 12
RB7/PGD Pin	9, 12
RC0/T1OSO/T1CKI Pin	10, 13
RC1/T1OSI/CCP2 Pin	10, 13
RC2/CCP1 Pin	10, 13
RC3/SCK/SCL Pin	10, 13
RC4/SDI/SDA Pin	10, 13
RC5/SDO Pin	10, 13
RC6/TX/CK Pin	10, 13
RC7/RX/DT Pin	10, 13
RCIO Oscillator	35
RCSTA Register	
ADDEN Bit	134
CREN Bit	134
FERR Bit	134
OERR Bit	134
RX9 Bit	134
RX9D Bit	134
SPEN Bit 1	33, 134
SREN Bit	134
RD0/PSP0 Pin	14
RD1/PSP1 Pin	14
RD2/PSP2 Pin	14
RD3/PSP3 Pin	14
RD4/PSP4 Pin	14
RD5/PSP5 Pin	14
RD6/PSP6 Pin	14
RD7/ <u>PS</u> P7 Pin	14
RE0/RD/AN5 Pin	14
RE1/WR/AN6 Pin	14
RE2/CS/AN7 Pin	14
Reader Response	276
Register File	15
Registers	
ADCON0 (A/D Control 0)	152
ADCON1 (A/D Control 1)	153
ADCON2 (A/D Control 2)	154
CCPxCON (CCPx Control)	88
CMCON (Comparator Control)	161
CVRCON (Comparator Voltage	
Reference Control)	167
Initialization Conditions (table) 1	80–181
INTCON (Interrupt Control)	23
LVDCON (Low-Voltage Detect Control)	176
OPTION_REG (Option Control)	22, 75
OSCCON (Oscillator Control)	38
OSCTUNE (Oscillator Tuning)	36
PCON (Power Control/Status)	28