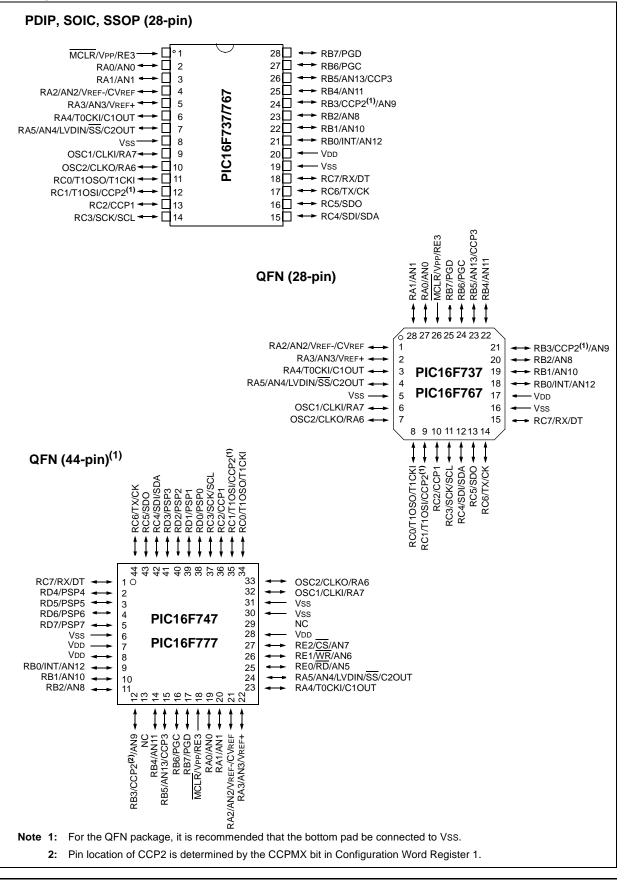


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf767-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	15
3.0	Reading Program Memory	31
4.0	Oscillator Configurations	33
5.0	I/O Ports	49
6.0	Timer0 Module	73
7.0	Timer1 Module	77
8.0	Timer2 Module	85
9.0	Capture/Compare/PWM Modules	87
10.0	Master Synchronous Serial Port (MSSP) Module	93
11.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	133
12.0	Analog-to-Digital Converter (A/D) Module	151
13.0	Comparator Module	161
14.0	Comparator Voltage Reference Module	167
15.0	Special Features of the CPU	169
16.0	Instruction Set Summary	193
17.0	Development Support	201
19.0	DC and AC Characteristics Graphs and Tables	235
	Packaging Information	
Appe	ndix A: Revision History	
Appe	ndix B: Device Differences	265
Appe	ndix C: Conversion Considerations	
	Nicrochip Web Site	
Custo	omer Change Notification Service	275
Custo	omer Support	275
Read	ler Response	276
PIC1	6F7X7 Product Identification System	277

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

The Timer1 oscillator can be used as a secondary clock source in low-power modes. When the T1RUN bit is set along with SCS<1:0> = 01, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a Timer
- as a Synchronous Counter
- as an Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.4** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC0/T1OSO/T1CKI and RC1/T1OSI/CCP2 pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

7.9 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.10 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

7.11 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 7.6** "**Timer1 Oscillator**") gives users the option to include RTC functionality in their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 7-3, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

RTCinit	BANKSEL MOVLW MOVWF CLRF MOVLW MOVWF CLRF CLRF MOVLW MOVWF	TMR1H 0x80 TMR1H TMR1L b'00001111' T1CON secs mins .12 hours	; Preload TMR1 register pair ; for 1 second overflow ; Configure for external clock, ; Asynchronous operation, external oscillator ; Initialize timekeeping registers
	BANKSEL BSF	PIE1 PIE1, TMR1IE	; Enable Timer1 interrupt
RTCisr	RETURN BANKSEL	TMR1H	
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVF	secs, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	seconds	; Clear seconds
	INCF	mins, f	; Increment minutes
	MOVF	mins, w	
	SUBLW	.60	
	BTFSS	STATUS, Z	; 60 seconds elapsed?
	RETURN		; No, done
	CLRF	mins	; Clear minutes
	INCF	hours, f	; Increment hours
	MOVF	hours, w	
	SUBLW	.24	
	BTFSS	STATUS, Z	; 24 hours elapsed?
	RETURN		; No, done
	CLRF	hours	; Clear hours
	RETURN		; Done

EXAMPLE 7-3: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

REGISTER 8-1:	T2CON:	TIMER2 C		REGISTER	(ADDRESS	5 12h)							
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0					
	bit 7				·			bit 0					
bit 7	Unimple	mented: Rea	d as '0'										
bit 6-3	-	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits											
	0000 = 1 0001 = 1	:1 Postscale :2 Postscale :3 Postscale											
	•												
	•												
	1111 = 1	:16 Postscale)										
bit 2	TMR2ON: Timer2 On bit												
	1 = Time 0 = Time												
bit 1-0	T2CKPS	1:T2CKPS0:	Timer2 Cloc	k Prescale S	Select bits								
		scaler is 1 scaler is 4											
		scaler is 16											
	Legend	:											
								(0)					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value or POR, BC		Valu all c Res	other
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 00	0x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 00	00	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 00	00	0000	0000
11h	TMR2	Timer2 M	odule Regis	ster						0000 00	00	0000	0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 00	00	-000	0000
92h	PR2	Timer2 Pe	eriod Regist	ter						1111 11	11	1111	1111

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767 devices; always maintain these bits clear.

10.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

10.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

10.2 Control Registers

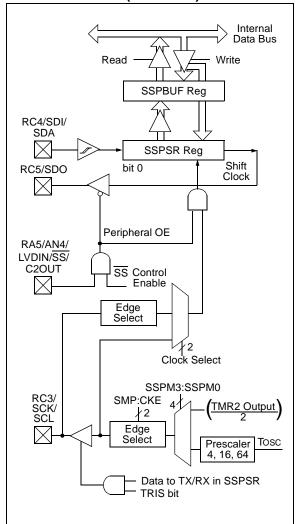
The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON and SSPCON2). The use of these registers and their individual configuration bits differ significantly, depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

10.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL


Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) – RA5/AN4/LVDIN/SS/C2OUT

Figure 10-1 shows the block diagram of the MSSP module when operating in SPI mode.

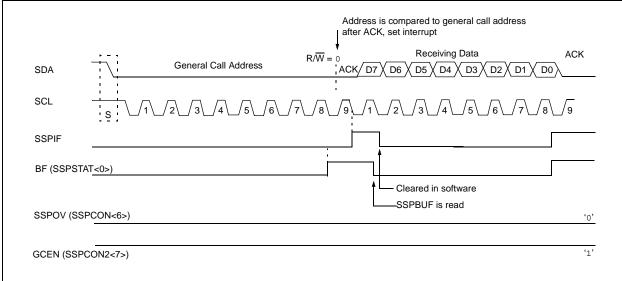
FIGURE 10-1:

MSSP BLOCK DIAGRAM (SPI MODE)

10.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set and while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 10-15).

10.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

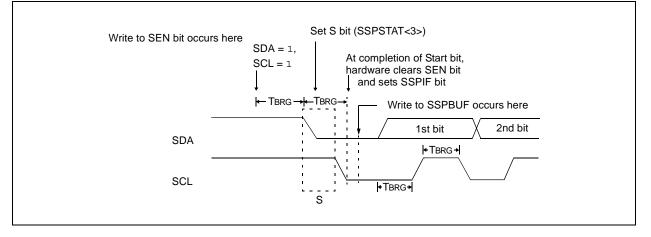

Note: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

FIGURE 10-19: FIRST START BIT TIMING

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

ER 11-2:	RCSTA: R											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Ser	ial Port Ena	ble bit									
	-	oort enabled		RC7/RX/D	Fand RC6/T	X/CK pins a	as serial port	pins)				
bit 6	RX9 : 9-bit	Receive Ena	able bit									
		s 9-bit recep s 8-bit recep										
bit 5	SREN: Sin	gle Receive	Enable bit									
	<u>Asynchronous mode:</u> Don't care.											
	Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete.											
	<u>Synchrono</u> Don't care.	us mode – S	<u>Slave:</u>									
bit 4	CREN: Cor	ntinuous Re	ceive Enable	e bit								
		ous mode: s continuou es continuou										
				til enable bi	CREN is cle	eared (CRE	N overrides	SREN)				
bit 3	ADDEN: A	ddress Dete	ect Enable bi	t								
	Asynchron	ous mode 9	-bit (RX9 = 1	<u>.):</u>								
	RSR<	8> is set			upt and load							
				l bytes are r	eceived and	ninth bit ca	n be used a	s parity bit				
bit 2		ming Error t										
	1 = Framin 0 = No frar		be updated	by reading	RCREG regi	ster and red	ceiving next	valid byte)				
bit 1	OERR: OV	errun Error I	oit									
	1 = Overru 0 = No ove		be cleared b	by clearing l	oit CREN)							
bit 0	RX9D: 9th	bit of Receiv	ved Data									
	Can be par	ity bit but m	ust be calcul	lated by use	er firmware.							
	Legend:											
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'				
		at POR		t is set	'0' = Bit is	-	,	-				

REGISTER 12-3:	ADCON2: A/D CONTROL REGISTER 2 (ADDRESS 9Bh) U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 — — ACQT2 ACQT1 ACQT0 — — — —									
	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
		—	ACQT2	ACQT1	ACQT0	—	_	_		
	bit 7							bit 0		

bit 7-6 Unimplemented: Read as '0'

bit 5-3 ACQT<2:0>: A/D Acquisition Time Select bits

 $000 = 0^{(1)}$ 001 = 2 TAD 010 = 4 TAD011 = 6 TAD 100 = 8 TAD 101 = **12T**AD 110 = 16 TAD 111 = 20 TAD

> Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF-/CVREF pins.

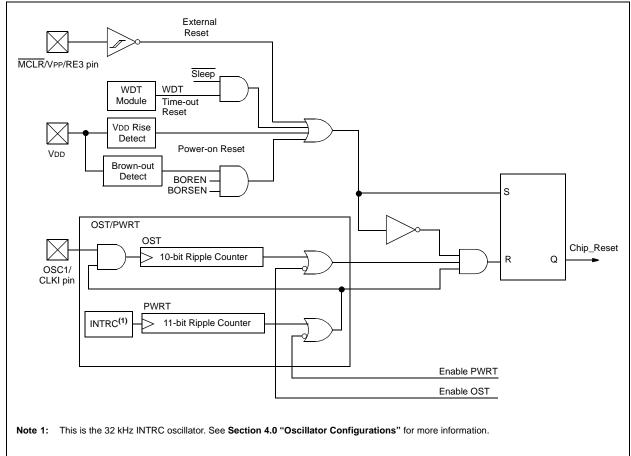
The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 12-1.

REGIST	REGISTER 15-2: CONFIGURATION WORD REGISTER 2 (ADDRESS 2008h)												
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
	_	_	—	—	_		BORSEN		—	_	—	IESO	FCMEN
bit 13													bit 0
bit 13-7 bit 6	BORSEN: Brown-out Reset Software Enable bit Refer to Configuration Word Register 1, bit 6 for the function of this bit.												
bit 5-2	Unimplemented: Read as '1'												
bit 1	IESO: Internal External Switchover bit 1 = Internal External Switchover mode enabled 0 = Internal External Switchover mode disabled												
bit 0	1 = F	FCMEN: Fail-Safe Clock Monitor Enabled 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled											
	Lege	end:											
	R = I	Readabl	e bit		W = 1	Writable	e bit	U = Uni	mpleme	nted bit, i	read as '	0'	
	-n =	Value at	POR		'1' =	Bit is se	t	0' = Bit	is cleare	ed	x = Bit is	s unknov	vn


15.2 Reset

The PIC16F7X7 differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset during normal operation
- WDT Wake-up during Sleep
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT wake-up which is viewed as the resumption of normal operation. The \overline{TO} and \overline{PD} bits are set or cleared differently in different Reset situations, as indicated in Table 15-3. These bits are used in software to determine the nature of the Reset. Upon a POR, BOR or wake-up from Sleep, the CPU requires approximately 5-10 µs to become ready for code execution. This delay runs in parallel with any other timers. See Table 15-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 15-1.

FIGURE 15-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

	7 37/747/767/777 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial											
	37/747/767/777 strial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Device	Тур	Max	Units	Conditions								
	Supply Current (IDD) ^(2,3)												
	PIC16LF7X7	9	20	μA	-40°C								
		7	15	μΑ	+25°C	VDD = 2.0V							
		7	15	μΑ	+85°C								
	PIC16LF7X7	16	30	μΑ	-40°C								
		14	25	μΑ	+25°C	VDD = 3.0V	Fosc = 32 kHz						
		14	25	μΑ	+85°C		(LP Oscillator)						
	All devices	32	40	μΑ	-40°C								
		26	35	μΑ	+25°C	VDD = 5.0V							
		26	35	μΑ	+85°C	VDD = 3.0V							
	Extended devices	35	53	μΑ	+125°C								
	PIC16LF7X7	72	95	μA	-40°C								
		76	90	μA	+25°C	VDD = 2.0V							
		76	90	μA	+85°C								
	PIC16LF7X7	138	175	μΑ	-40°C	_							
		136	170	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz						
		136	170	μΑ	+85°C		(RC Oscillator) ⁽³⁾						
	All devices	310	380	μΑ	-40°C								
		290	360	μΑ	+25°C	VDD = 5.0V							
		280	360	μΑ	+85°C	122 - 0.01							
	Extended devices	330	500	μΑ	+125°C								

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

	7 37/747/767/777 strial)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended										
	37/747/767/777 strial, Extended)												
Param No.	Device	Тур	Max	Units	Conditions								
	Supply Current (IDD) ^(2,3)												
	PIC16LF7X7	.950	1.3	mA	-40°C								
		.930	1.2	mA	+25°C	VDD = 3.0V							
		.930	1.2	mA	+85°C		Fosc = 8 MHz						
	All devices	1.8	3.0	mA	-40°C		(RC_RUN mode,						
		1.7	2.8	mA	+25°C	VDD = 5.0V	Internal RC Oscillator)						
		1.7	2.8	mA	+85°C	VDD = 3.0V							
	Extended devices	2.0	4.0	mA	+125°C								
	PIC16LF7X7	9	13	μA	-10°C								
		9	14	μA	+25°C	VDD = 2.0V							
		11	16	μΑ	+70°C								
	PIC16LF7X7	12	34	μΑ	-10°C		Fosc = 32 kHz						
		12	31	μA	+25°C	VDD = 3.0V	(SEC_RUN mode,						
		14	28	μA	+70°C		Timer1 as Clock)						
	All devices	20	72	μA	-10°C								
		20	65	μA	+25°C	VDD = 5.0V							
		25	59	μA	+70°C								

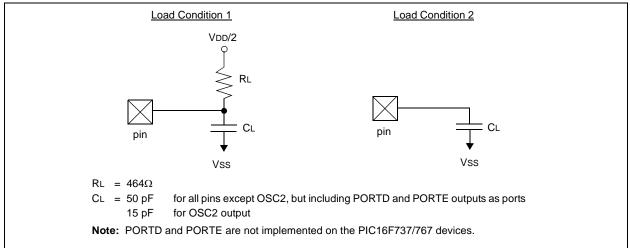
Legend: Shading of rows is to assist in readability of the table.

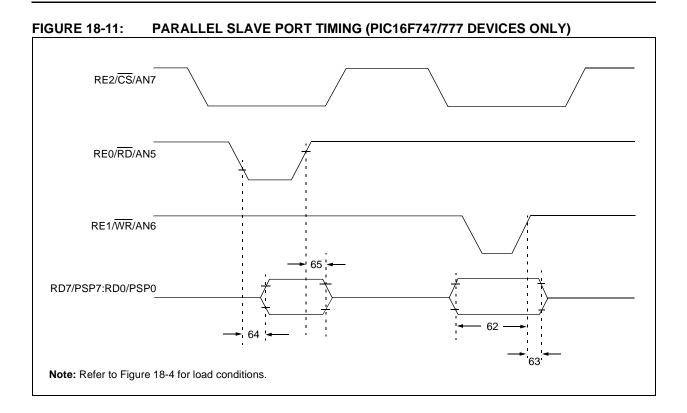
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;


- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.


18.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)		
2. TppS		4. Ts	(I ² C specifications only)		
Т					
F	Frequency	Т	Time		
Lowerca	se letters (pp) and their meanings:	•			
рр					
сс	CCP1	osc	OSC1		
ck	CLKO	rd	RD		
CS	CS	rw	RD or WR		
di	SDI	SC	SCK		
do	SDO	SS	SS		
dt	Data in	tO	TOCKI		
io	I/O port	t1	T1CKI		
mc	MCLR	wr	WR		
	se letters and their meanings:				
S					
F	Fall	Р	Period		
Н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		
I ² C only					
AA	output access	High	High		
BUF	Bus free	Low	Low		
TCC:ST (¹² C specifications only)				
CC					
HD	Hold	SU	Setup		
ST					
DAT	DATA input hold	STO	Stop condition		
STA	Start condition				

FIGURE 18-4: LOAD CONDITIONS

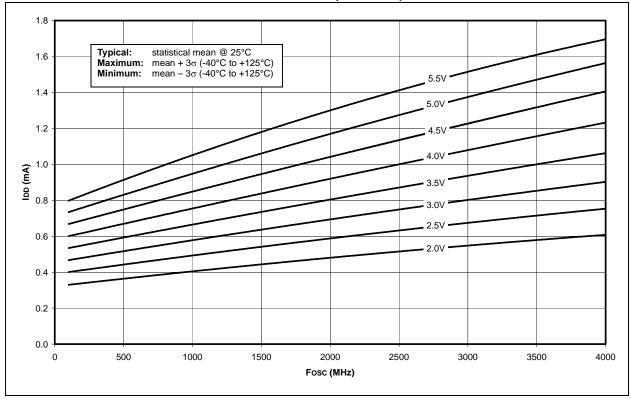
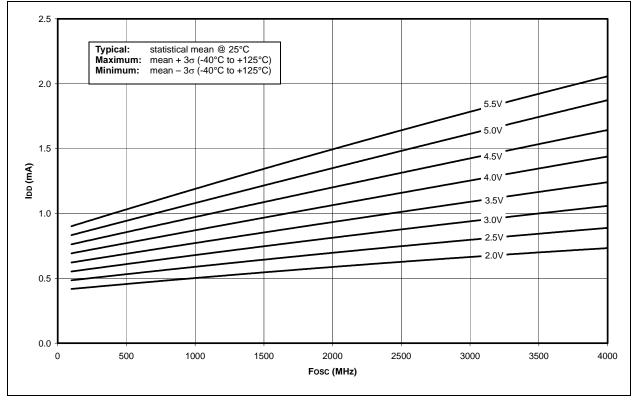


TABLE 18-9: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F747/777 DEVICES ONLY)

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before \overline{WR} \uparrow or \overline{CS} \uparrow (setup time)		20	—	_	ns	
			25	—		ns	Extended range only	
63*	TwrH2dtI		PIC16F7X7	20	—	_	ns	
			PIC16LF7X7	35	—	—	ns	
64	TRDL2DTV $\overline{RD} \downarrow$ and $\overline{CS} \downarrow$ to Data Out Valid		_	—	80	ns		
				—	-	90	ns	Extended range only
65	TrdH2dtI	\overline{RD} \uparrow or \overline{CS} \downarrow to Data Out Invalid		10	—	30	ns	
* These parameters are characterized but not tested								


These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

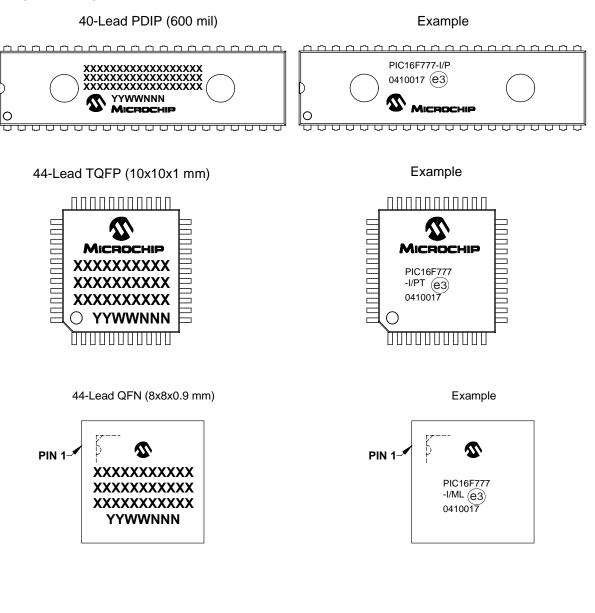


FIGURE 19-4: MAXIMUM IDD vs. Fosc OVER VDD (XT MODE)

Package Marking Information (Continued)

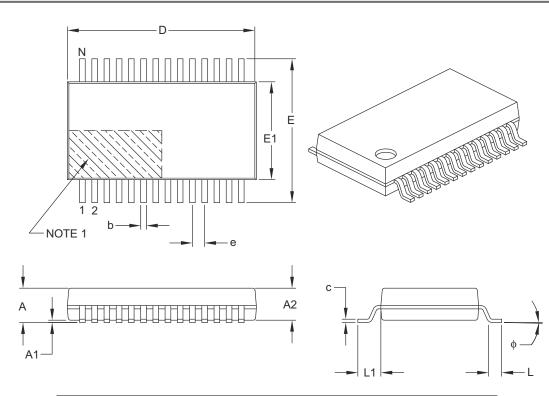


20.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	INCHES			
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	А	_		
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Dimension Limits		NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height		-			
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
otprint L1 1.25 REF					
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B