

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf767t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION_REG Register

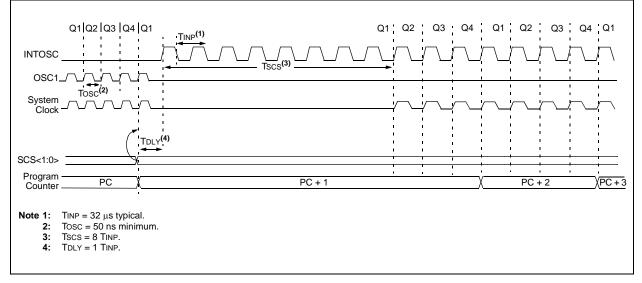
The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register also known as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 81h, 181h)

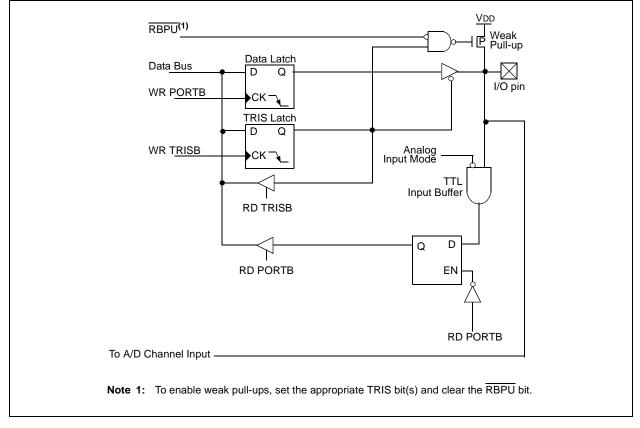
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0				
	bit 7							bit				
oit 7	RBPU : PO	RTB Pull-up E	Enable bit									
	 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values 											
it 6	INTEDG: Interrupt Edge Select bit											
	 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin 											
oit 5		R0 Clock Sour		it								
	1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKO)											
oit 4		T0SE : TMR0 Source Edge Select bit										
	 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin 											
it 3	PSA: Prescaler Assignment bit											
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 											
it 2-0	PS2:PS0:	Prescaler Rate	e Select bits	5								
	Bit Va	alue TMR0 I	Rate WDT	Rate								
	0 0 0 0	1.4	1:1									
	00		1:4									
	01											
	10 10	1.01		-								
	11		28 1:6	64								
	11	1 1:25	56 1:1	28								
	Legend:											
	R = Reada	able bit	W = Wr	ritable bit	U = Unimplemented bit, read as '0'							
	-n = Value	at POR	'1' = Bit	is set	0' = Bit is cleared x = Bit is unknown							

4.7 Power-Managed Modes


4.7.1 RC_RUN MODE

When SCS bits are configured to run from the INTRC, a clock transition is generated if the system clock is not already using the INTRC. The event will clear the OSTS bit and switch the system clock from the primary system clock (if SCS<1:0> = 00) determined by the value contained in the configuration bits, or from the T1OSC (if SCS<1:0> = 01) to the INTRC clock option and shut-down the primary system clock to conserve power. Clock switching will not occur if the primary system clock is already configured as INTRC.

If the system clock does not come from the INTRC (31.25 kHz) when the SCS bits are changed and the IRCF bits in the OSCCON register are configured for a frequency other than INTRC, the frequency may not be stable immediately. The IOFS bit (OSCCON<2>) will be set when the INTOSC or postscaler frequency is stable, after 4 ms (approx.).


After a clock switch has been executed, the OSTS bit is cleared, indicating a low-power mode and the device does not run from the primary system clock. The internal Q clocks are held in the Q1 state until eight falling edge clocks are counted on the INTRC oscillator. After the eight clock periods have transpired, the clock input to the Q clocks is released and operation resumes (see Figure 4-7).

PIC16F7X7

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE (PIE1<0>).

The Timer1 oscillator can be used as a secondary clock source in low-power modes. When the T1RUN bit is set along with SCS<1:0> = 01, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

7.1 Timer1 Operation

Timer1 can operate in one of three modes:

- as a Timer
- as a Synchronous Counter
- as an Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit, TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP1 module as the special event trigger (see **Section 9.4** "**Capture Mode**"). Register 7-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC0/T1OSO/T1CKI and RC1/T1OSI/CCP2 pins become inputs. That is, the TRISB<7:6> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

7.2 Timer1 Operation in Timer Mode

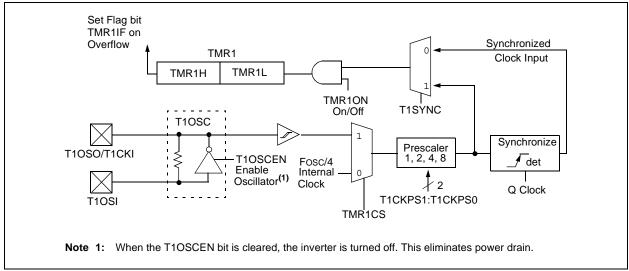
Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit, T1SYNC (T1CON<2>), has no effect since the internal clock is always in sync.

7.3 Timer1 Counter Operation

Timer1 may operate in Asynchronous or Synchronous mode depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

7.4 Timer1 Operation in Synchronized Counter Mode


Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration during Sleep mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BO	al	lue on I other esets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000	x 000	0 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0 0 0 0	0 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0 0 0 0	0 0000
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								x uuu	u uuuu
0Fh	TMR1H	Holding R	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									u uuuu
10h	T1CON	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000 000	0 -uu	u uuuu

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F737/767 devices; always maintain these bits clear.

9.5.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to
	the default low level. This is not the
	PORTC I/O data latch.

9.5.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.5.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCP1IF or CCP2IF bit is set, causing a CCP interrupt (if enabled).

9.5.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 and CCP2 modules will not set interrupt flag bit, TMR1IF (PIR1<0>).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	CMIF	LVDIF	—	BCLIF	—	CCP3IF	CCP2IF	000- 0-00	000- 0-00
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	CMIE	LVDIE	_	BCLIE	_	CCP3IE	CCP2IE	000- 0-00	000- 0-00
87h	TRISC	PORTC D	Data Direo	ction Regist	er					1111 1111	1111 1111
0Eh	TMR1L	Holding R	legister fo	or the Least	Significant	Byte of the 1	16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	legister fo	or the Most	Significant I	Byte of the 1	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	—	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	-000 0000	-uuu uuuu
15h	CCPR1L	Capture/0	Compare/	PWM Regi	ster 1 (LSB))				xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/	PWM Regi	ster 1 (MSB	5)				xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/0	Compare/	PWM Regi	ster 2 (LSB))				xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/0	Compare/	PWM Regi	ster 2 (MSB	5)				xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
95h	CCPR3L	Capture/0	Capture/Compare/PWM Register 3 (LSB)								uuuu uuuu
96h	CCPR3H	Capture/0	Compare/	PWM Regi	ster 3 (MSB	5)				xxxx xxxx	uuuu uuuu
97h	CCP3CON	—	—	CCP3X	CCP3Y	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000

TABLE 9-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on the PIC16F737/767 devices; always maintain these bits clear.

10.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

10.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

10.3.10 BUS MODE COMPATIBILITY

Table 10-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 10-1: SPI BUS MODES

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISC	PORTC Da	ata Direction	Register						1111 1111	1111 1111
SSPBUF	Synchrono	us Serial Por	t Receive B	Suffer/Trans	smit Registe	r			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	PORTA Da		1111 1111	1111 1111						
SSPSTAT	SMP	CKE	D/A	Р	s	R/W	UA	BF	0000 0000	0000 0000

TABLE 10-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode.
 Note 1: The PSPIF and PSPIE bits are reserved on 28-pin devices; always maintain these bits clear.

PIC16F7X7

ER 11-2:	RCSTA: R										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Ser	ial Port Ena	ble bit								
	 1 = Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pin 0 = Serial port disabled 										
bit 6	RX9 : 9-bit	Receive Ena	able bit								
	1 = Selects 9-bit reception0 = Selects 8-bit reception										
bit 5	SREN: Sin	gle Receive	Enable bit								
	<u>Asynchron</u> Don't care.										
	<u>Synchronous mode – Master:</u> 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete.										
	<u>Synchronous mode – Slave:</u> Don't care.										
bit 4	CREN: Continuous Receive Enable bit										
	<u>Asynchronous mode:</u> 1 = Enables continuous receive 0 = Disables continuous receive										
	Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive										
bit 3	ADDEN: A	ddress Dete	ect Enable bi	t							
	Asynchronous mode 9-bit (RX9 = 1):										
	 1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set 										
				l bytes are r	eceived and	ninth bit ca	n be used a	s parity bit			
bit 2		ming Error t									
	1 = Framin 0 = No frar		be updated	by reading	RCREG regi	ster and red	ceiving next	valid byte)			
bit 1	OERR: OV	errun Error I	pit								
	1 = Overrun error (can be cleared by clearing bit CREN)0 = No overrun error										
bit 0	RX9D: 9th	RX9D: 9th bit of Received Data									
	Can be parity bit but must be calculated by user firmware.										
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'			
		at POR		t is set	'0' = Bit is	-	,	-			

Baud		Fosc = 20 MI	Hz		Fosc = 16 M	Hz	Fosc = 10 MHz		
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	—	_	_	—	_	_	_	_	_
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	_	255	0.977	_	255	0.610	—	255
LOW	312.500	_	0	250.000	_	0	156.250	_	0

David		Fosc = 4 MH	łz	Fosc = 3.6864 MHz				
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)		
0.3	0.300	0	207	0.3	0	191		
1.2	1.202	0.17	51	1.2	0	47		
2.4	2.404	0.17	25	2.4	0	23		
9.6	8.929	6.99	6	9.6	0	5		
19.2	20.833	8.51	2	19.2	0	2		
28.8	31.250	8.51	1	28.8	0	1		
33.6	_	_	_	_	_	_		
57.6	62.500	8.51	0	57.6	0	0		
HIGH	0.244	_	255	0.225	_	255		
LOW	62.500	_	0	57.6	_	0		

TABLE 11-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

	Fosc = 20 MHz		1	Fosc = 16 MH	łz	Fosc = 10 MHz			
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)
0.3	—	_	_	—	_	_		_	_
1.2	_	_	_	_	_	_	_	_	_
2.4	—	_	_	—	_	_	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	_	255	3.906	_	255	2.441	_	255
LOW	1250.000	_	0	1000.000	_	0	625.000	_	0

Baud		Fosc = 4 MH	z	Fosc = 3.6864 MHz			
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	_	_	_	_	_	—	
1.2	1.202	0.17	207	1.2	0	191	
2.4	2.404	0.17	103	2.4	0	95	
9.6	9.615	0.16	25	9.6	0	23	
19.2	19.231	0.16	12	19.2	0	11	
28.8	27.798	3.55	8	28.8	0	7	
33.6	35.714	6.29	6	32.9	2.04	6	
57.6	62.500	8.51	3	57.6	0	3	
HIGH	0.977	—	255	0.9	_	255	
LOW	250.000	_	0	230.4	_	0	

11.4.2 AUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 11-13: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	AUSART	Receive	Data Regi	ster					0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000	

Legend: x = unknown, — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices, always maintain these bits clear.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) $-1 \rightarrow$ (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2 TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2 TCY instruction.

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits<10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.					

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are ORed with the eight-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

17.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

17.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

17.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

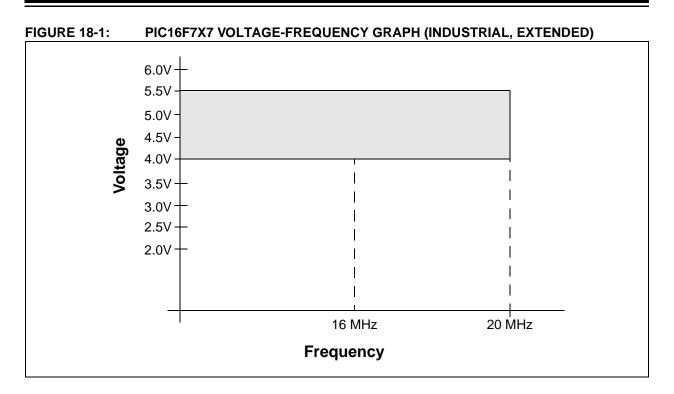
- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

17.5 MPLINK Object Linker/ MPLIB Object Librarian

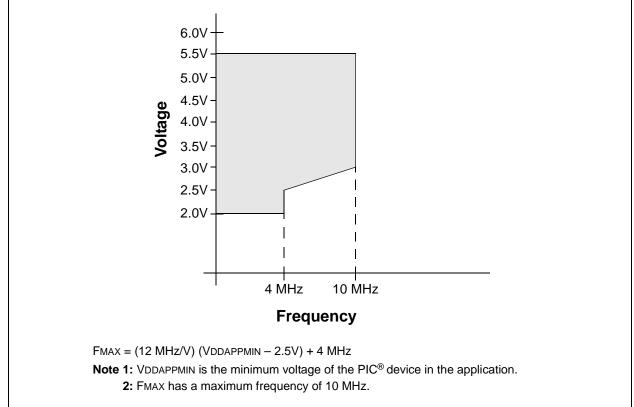
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

17.6 MPLAB Assembler, Linker and Librarian for Various Device Families


MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

PIC16F7X7

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF737/747/767/777 (Industrial) PIC16F737/747/767/777 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Typ Max Units Conditions					ons			
	Supply Current (IDD) ^(2,3)									
	PIC16LF7X7	8	20	μA	-40°C					
		7	15	μA	+25°C	VDD = 2.0V				
		7	15	μA	+85°C					
	PIC16LF7X7	16	30	μA	-40°C					
		14	25	μA	+25°C	VDD = 3.0V	Fosc = 31.25 kHz			
		14	25	μA	+85°C		(RC_RUN mode, Internal RC Oscillator)			
	All devices	32	40	μA	-40°C					
		29	35	μA	+25°C	VDD = 5.0V				
		29	35	μA	+85°C	VDD = 5.0V				
	Extended devices	35	45	μA	+125°C					
	PIC16LF7X7	132	160	μA	-40°C					
		126	155	μA	+25°C	VDD = 2.0V				
		126	155	μA	+85°C					
	PIC16LF7X7	260	310	μA	-40°C					
		230	300	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC_RUN mode,			
		230	300	μA	+85°C		Internal RC Oscillator)			
	All devices	560	690	μA	-40°C		,			
		500	650	μΑ	+25°C	VDD = 5.0V				
		500	650	μΑ	+85°C	VDU = 3.0V				
	Extended devices	570	710	μA	+125°C					
	PIC16LF7X7	310	420	μA	-40°C					
		300	410	μΑ	+25°C	VDD = 2.0V				
		300	410	μΑ	+85°C					
	PIC16LF7X7	550	650	μΑ	-40°C					
		530	620	μΑ	+25°C	VDD = 3.0V	Fosc = 4 MHz (RC_RUN mode,			
		530	620	μΑ	+85°C		Internal RC Oscillator)			
	All devices	1.2	1.5	mA	-40°C		,			
		1.1	1.4	mA	+25°C	VDD = 5.0V				
		1.1	1.4	mA	+85°C	VDD = 3.0V				
	Extended devices	1.3	1.6	mA	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

18.2 DC Characteristics: Power-Down and Supply Current PIC16F737/747/767/777 (Industrial, Extended) PIC16LF737/747/767/777 (Industrial) (Continued)

PIC16LF737/747/767/777 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F737/747/767/777 (Industrial, Extended)									
Param Device		Тур	Max	Units Conditions					
	Module Differential Currer	nts (∆lw	от, ∆ іво	R, ∆İLVD	, Δ IOSCB, Δ IAD)				
D025	Timer1 Oscillator	1.7	2.3	μA	-40°C				
(∆IOSCB)		1.8	2.3	μΑ	+25°C	VDD = 2.0V VDD = 3.0V			
		2.0	2.3	μΑ	+85°C				
		2.2	3.8	μΑ	-40°C				
		2.6	3.8	μΑ	+25°C		32 kHz on Timer1		
		2.9	3.8	μA	+85°C				
		3.0	6.0	μΑ	-40°C				
		3.2	6.0	μΑ	+25°C	VDD = 5.0V			
		3.4	7.0	μΑ	+85°C				
D026	A/D Converter	0.001	2.0	μΑ	-40°C to +85°C	VDD = 2.0V			
(∆IAD)		0.001	2.0	μΑ	-40°C to +85°C	VDD = 3.0V	A/D on, Sleep, not converting		
		0.003	2.0	μΑ	-40°C to +85°C	VDD = 5.0V	A/D on, Sleep, not converting		
	Extended devices	4	8	mA	-40°C to +125°C	VDD = 5.0V			

Legend: Shading of rows is to assist in readability of the table.

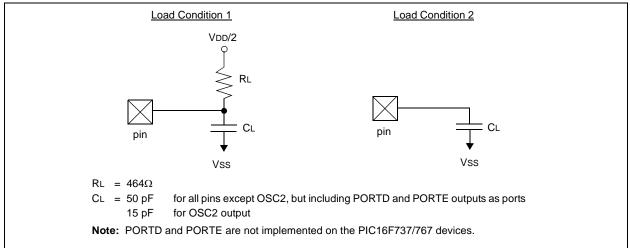
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

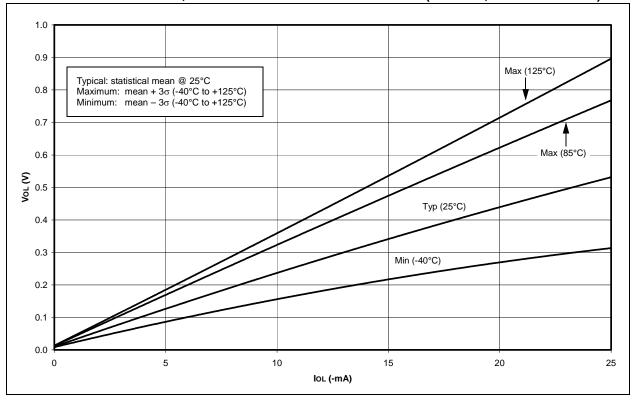
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

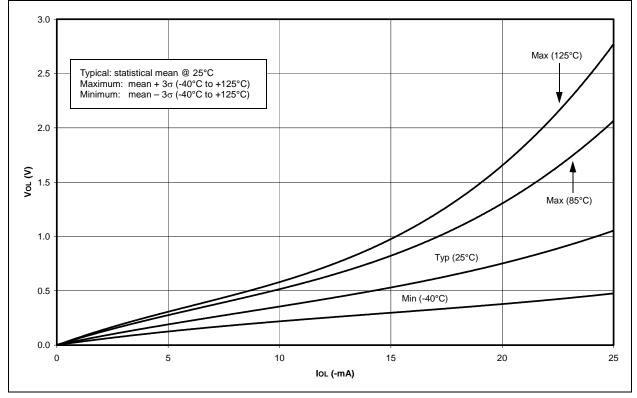
MCLR = VDD; WDT enabled/disabled as specified.


3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k Ω .


18.5 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:	•	
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (¹² C specifications only)		
CC	••		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		


FIGURE 18-4: LOAD CONDITIONS



20.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	А	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring15	55
Acquisition Requirements15	6
ADRESH Register15	54
Analog Port Pins6	38
Analog-to-Digital Converter15	
Associated Registers16	
Automatic Acquisition Time	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Module	
Conversion Clock	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions	
Delays	
Effects of a Reset16	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep16	60
Operation in Power-Managed Modes15	6
Source Impedance15	6
Time Delays15	6
Use of the CCP Trigger16	
Absolute Maximum Ratings 20	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	.0
GO/DONE Bit	: 1
Addressable Universal Synchronous Asynchronous	14
Receiver Transmitter. See AUSART	
ADRESL Register	94
Application Notes	
AN546 (Using the Analog-to-Digital (A/D)	
AN546 (Using the Analog-to-Digital (A/D) Converter)15	
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	56
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	56 29
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 84
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 84
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40 38
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40 38
AN546 (Using the Analog-to-Digital (A/D) Converter)	56 29 73 02 34 33 42 38 40 38
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (14 13 Asynchronous Receive (14 14 Asynchronous Receive (14 14 </td <td>56 29 73 02 34 33 42 38 40 38 41</td>	56 29 73 02 34 33 42 38 40 38 41
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	56 29 73 02 34 33 42 38 40 38 41
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode). Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode). Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14 Asynchronous Reception with Address 144 Asynchronous Reception with Address <t< td=""><td>56 29 73 02 34 33 42 38 40 38 43 41 42</td></t<>	56 29 73 02 34 33 42 38 40 38 43 41 42
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	56 29 73 02 34 33 42 38 40 38 43 41 42
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address 141, 14 Setup 14 Asynchronous Reception 141, 14 Asynchronous Reception 14 As	56 29 73 52 34 33 12 34 33 12 34 13 13 14 13 14 13 14 13 14 15 16 17 18 19
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 14 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Transmission 13 Associated Registers 13 Setup	56 29 73 02 34 33 42 38 40 38 41 42 39 39
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 14 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 14 Asynchronous Rece	56 9 73 02 34 33 12 34 13 12 14 13 15 14 16 13 17 14 18 10 19 13 14 14 15 14 16 14 17 14 18 14 19 15
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 14 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Transmission 13 Associated Registers 13 Setup	56 9 73 92 34 33 12 84 33 12 84 33 13 14 14 14 14 14 14 15 13 15

Baud Rates, Asynchronous Mode	
(BRGH = 0)	136
Baud Rates, Asynchronous Mode	
(BRGH = 1)	136
High Baud Rate Select (BRGH Bit)	133
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 0)	137
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 1)	137
Sampling	
Clock Source Select (CSRC Bit)	133
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	134
Receive Enable, 9-Bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 133,	
Single Receive Enable (SREN Bit)	134
Synchronous Master Mode	
Reception	
Transmission	144
Synchronous Master Reception	
Associated Registers	146
Setup	
Synchronous Master Transmission	
Associated Registers	145
Setup	144
Synchronous Slave Mode	148
Reception	149
Transmit	148
Synchronous Slave Reception	
Associated Registers	149
Setup	149
Synchronous Slave Transmission	
Associated Registers	148
Setup	148
Transmit Data, 9th Bit (TX9D)	133
Transmit Enable (TXEN Bit)	133
Transmit Enable, 9-Bit (TX9 Bit)	
Transmit Shift Register Status (TRMT Bit)	133

В

Banking, Data Memory	15
Baud Rate Generator	119
BF	123
BF Status Flag	123
Block Diagrams	
A/D	155
Analog Input Model	
AUSART Receive	
AUSART Transmit	
Baud Rate Generator	
Capture Mode Operation	
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare	
Fail-Safe Clock Monitor	189
In-Circuit Serial Programming Connections	192
Interrupt Logic	184
Low-Voltage Detect (LVD)	
Low-Voltage Detect (LVD) with External Input.	175
Low-Voltage Detect Characteristics	
MSSP (I ² C Master Mode)	117