

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf777-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 Status Register

The Status register contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the Status register as $000u \ uluu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
IRP	RP1	RP0	TO	PD	Z	DC	С		
bit 7							bit 0		
1 = Bank 2	, 3 (100h-1FF		or indirect ac	ldressing)					
11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes.									
TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction									
PD : Power 1 = After pe	-Down bit ower-up or by	the CLRWDT							
Z : Zero bit 1 = The res	sult of an arith	imetic or logi	c operation is						
DC : Digit C 1 = A carry	arry/borrow b -out from the	it (ADDWF, AI 4th low-orde	DDLW, SUBL	.w, SUBWF sult occurre		s)			
C: Carry/bo	orrow bit (ADD -out from the ry-out from the	WF, ADDLW Most Signific e Most Signif the polarity	, SUBLW, S cant bit of the ficant bit of th is reversed	SUBWF instrue result occu ne result occu	irred curred ction is exe		adding the		
	IRP: Regis 1 = Bank 2 0 = Bank 0 RP1:RP0: 11 = Bank 0 = Bank 0 = Bank 0 = Bank 0 = Bank Each bank TO: Time-co 1 = After po 0 = A WDT PD: Power 1 = After po 0 = By exe Z: Zero bit 1 = The rest $0 = The rest0 = The rest1 = A carry0 = No carry0 = No carry0 = No carry0 = No carry$	IRP: Register Bank Sele 1 = Bank 2, 3 (100h-1FF 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank 11 = Bank 3 (180h-1FFh 10 = Bank 2 (100h-17Fh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLR0 0 = A WDT time-out occ PD: Power-Down bit 1 = After power-up or by 0 = By execution of the s Z: Zero bit 1 = The result of an arith 0 = The result of an arith 0 = The result of an arith 0 = The result of an arith 1 = A carry-out from the 1 = A carry-out from the 0 = No carry-out from the 0 = No carry-out from the 0 = No carry-out from the 1 = No carry-out fro	IRP: Register Bank Select bit (used f 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT 0 = By execution of the SLEEP instru Z: Zero bit 1 = The result of an arithmetic or logi 0 = The result of an arithmetic or logi 1 = A carry-out from the 4th low-orde 0 = No carry-out from the 4th low-orde 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific 0 = No carry-out from the Most Signific	<pre>IRP: Register Bank Select bit (used for indirect ac 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for dire 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2: Zero bit 1 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = The result of an arithmetic or logic operation is 0 = No carry-out from the 4th low-order bit of the re 0 = No carry-out from the 4th low-order bit of the re 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the 0 = No carry-out from the Most Significant bit of the</pre>	<pre>IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressi 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. T0: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2. Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF 1 = A carry-out from the 4th low-order bit of the result occurre 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry-out from the Most Significant bit of the result occur 0 = No carry</pre>	 IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 10 = Bank 1 (80h-FFh) 10 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction Z Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 	<pre>IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh) RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h-1FFh) 10 = Bank 2 (100h-17Fh) 01 = Bank 1 (80h-FFh) 00 = Bank 0 (00h-7Fh) Each bank is 128 bytes. TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 2. Zero bit 1 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred</pre>		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

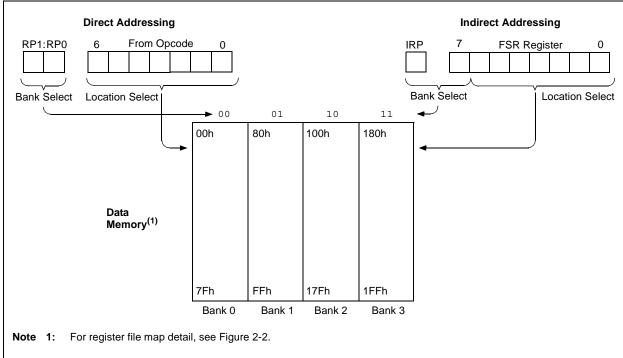
The INTCON register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt
bit 4	INTOIE: RB0/INT External Interrupt Enable bit
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow
bit 1	INTOIF: RB0/INT External Interrupt Flag bit
	 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit
	A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.
	 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state
	Legend:
	B = B and a bit $W = W$ is the bit $U = U$ implemented bit read as '0'

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = 0) will read 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (Status<7>) as shown in Figure 2-5.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

INDIRECT ADDRESSING EXAMPLE 2-2: MOVLW 0x20 ; initialize pointer MOVWF FSR ;to RAM NEXT ;clear INDF register CLRF TNDF INCF FSR, F ; inc pointer BTFSS FSR, 4 ;all done? GOTO NEXT ;no clear next CONTINUE ;yes continue :

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

4.6.5 CLOCK TRANSITION SEQUENCE

The following are three different sequences for switching the internal RC oscillator frequency:

- Clock before switch: 31.25 kHz (IRCF<2:0> = 000)
 - 1. IRCF bits are modified to an INTOSC/INTOSC postscaler frequency.
 - The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - The IOFS bit is clear to indicate that the clock is unstable and a 4 ms (approx.) delay is started. Time dependent code should wait for IOFS to become set.
 - 5. Switchover is complete.
- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to INTRC (IRCF<2:0> = 000).
 - 2. The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. Oscillator switchover is complete.

- Clock before switch: One of INTOSC/INTOSC postscaler (IRCF<2:0> ≠ 000)
 - 1. IRCF bits are modified to a different INTOSC/ INTOSC postscaler frequency.
 - The clock switching circuitry waits for a falling edge of the current clock, at which point CLKO is held low.
 - 3. The clock switching circuitry then waits for **eight** falling edges of requested clock, after which it switches CLKO to this new clock source.
 - 4. The IOFS bit is set.
 - 5. Oscillator switchover is complete.
- 4.6.6 OSCILLATOR DELAY UPON POWER-UP, WAKE-UP AND CLOCK SWITCHING

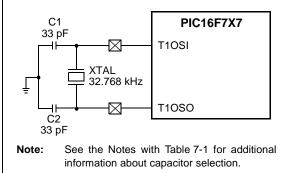

Table 4-3 shows the different delays invoked for various clock switching sequences. It also shows the delays invoked for POR and wake-up.

Clock Switch		Fraguanay	Oscillator Delay	Comments		
From	То	Frequency	Uscillator Delay	Comments		
Sleep/DOP	INTRC T1OSC	31.25 kHz 32.768 kHz	CPU Start-up ⁽¹⁾			
Sleep/POR	INTOSC/INTOSC Postscaler	125 kHz-8 MHz	4 ms (approx.) and CPU Start-up ⁽¹⁾	Following a wake-up from Sleep mode or POR, CPU start-up is invoked to		
INTRC/ Sleep	EC, RC	DC – 20 MHz		allow the CPU to become ready for code execution.		
INTRC (31.25 kHz)	EC, RC	DC – 20 MHz				
Sleep	LP, XT, HS	32.768 kHz-20 MHz	1024 Clock Cycles	Following a change from INTRC, the OST count of 1024 cycles must occur.		
INTRC (31.25 kHz)	INTOSC/INTOSC Postscaler	125 kHz-8 MHz	4 ms (approx.)	Refer to Section 4.6.4 "Modifying the IRCF Bits " for further details.		

TABLE 4-3: OSCILLATOR DELAY EXAMPLES

Note 1: The 5 µs-10 µs start-up delay is based on a 1 MHz system clock.

PIC16F7X7


FIGURE 5-5: BLOCK DIAGRAM OF RA5/AN4/LVDIN/SS/C2OUT PIN

7.6 Timer1 Oscillator

A crystal oscillator circuit is built between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 32.768 kHz. It will continue to run during all power-managed modes. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 7-3. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

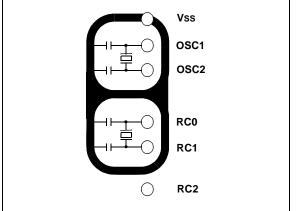
The user must provide a software time delay to ensure proper oscillator start-up.

FIGURE 7-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2	
LP	32 kHz	33 pF	33 pF	

- **Note 1:** Microchip suggests this value as a starting point in validating the oscillator circuit.
 - **2:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **4:** Capacitor values are for design guidance only.

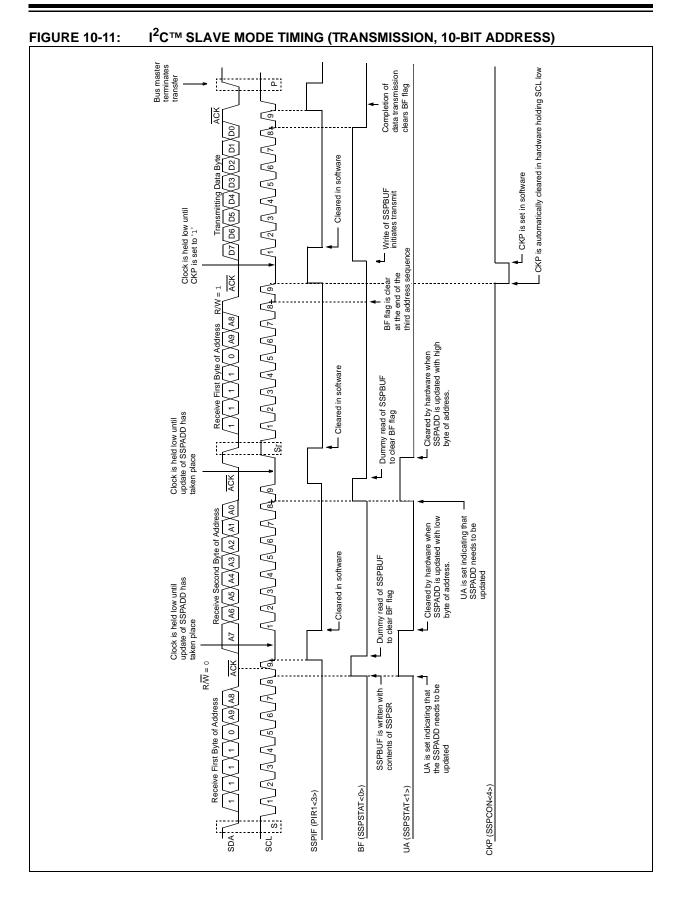

7.7 Timer1 Oscillator Layout Considerations

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 7-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator, a grounded guard ring around the oscillator circuit, as shown in Figure 7-4, may be helpful when used on a single sided PCB or in addition to a ground plane.

7.8 Resetting Timer1 Using a CCP Trigger Output


If the CCP1 module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The special event triggers from the CCP1								
	module	will	not	set	interrupt	flag	bit,		
	TMR1IF (PIR1<0>).								

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

Baud Rate (K)	Fosc = 20 MHz				Fosc = 16 MHz			Fosc = 10 MHz		
	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	—	_	_	—	_	_	_	_	_	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129	
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64	
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15	
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7	
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4	
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4	
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2	
HIGH	1.221	_	255	0.977	_	255	0.610	—	255	
LOW	312.500	_	0	250.000	_	0	156.250	_	0	

Baud		Fosc = 4 MH	łz	Fosc = 3.6864 MHz			
Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	0.300	0	207	0.3	0	191	
1.2	1.202	0.17	51	1.2	0	47	
2.4	2.404	0.17	25	2.4	0	23	
9.6	8.929	6.99	6	9.6	0	5	
19.2	20.833	8.51	2	19.2	0	2	
28.8	31.250	8.51	1	28.8	0	1	
33.6	_	_	_	_	_	_	
57.6	62.500	8.51	0	57.6	0	0	
HIGH	0.244	_	255	0.225	_	255	
LOW	62.500	_	0	57.6	_	0	

TABLE 11-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

	Fosc = 20 MHz			1	Fosc = 16 MH	łz	Fosc = 10 MHz			
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)	
0.3	—	_	_	—	_	_		_	_	
1.2	_	_	_	_	_	_	_	_	_	
2.4	—	_	_	—	_	—	2.441	1.71	255	
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64	
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31	
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21	
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18	
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10	
HIGH	4.883	_	255	3.906	_	255	2.441	_	255	
LOW	1250.000	_	0	1000.000	_	0	625.000	_	0	

Baud		Fosc = 4 MH	z	Fosc = 3.6864 MHz					
Baud Rate (K)	Kbaud	% Error	SPBRG Value (decimal)	Kbaud	% Error	SPBRG Value (decimal)			
0.3	_	_	_	_	_	—			
1.2	1.202	0.17	207	1.2	0	191			
2.4	2.404	0.17	103	2.4	0	95			
9.6	9.615	0.16	25	9.6	0	23			
19.2	19.231	0.16	12	19.2	0	11			
28.8	27.798	3.55	8	28.8	0	7			
33.6	35.714	6.29	6	32.9	2.04	6			
57.6	62.500	8.51	3	57.6	0	3			
HIGH	0.977	—	255	0.9	_	255			
LOW	250.000	_	0	230.4	_	0			

11.3.2 AUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>) or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive

data. Reading the RCREG register will load bit RX9D with a new value; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Section 11.1 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR		e on ther sets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	AUSART I	Receive F	Register						0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000	0000	0000	0000

TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.**Note 1:**Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

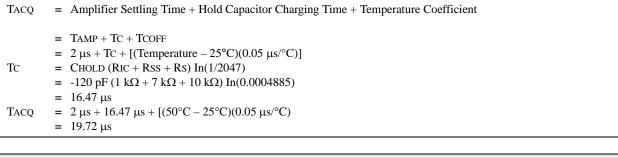
PIC16F7X7

REGISTER 12-2:	ADCO	N1: A		NTRO	L REG	ISTE	R 1 (ADDF	RESS	9Fh)					
	R/W-	0	R/W-0	R	/W-0	R/	W-0	R/	W-0	R	R/W-0	F	R/W-0	R	/W-0
	ADFI	M	ADCS2	V	CFG1	VC	FG0	PC	FG3	P	CFG2	P	PCFG1	PC	FG0
	bit 7									•					bit 0
bit 7	ADFM:	: A/D R	esult F	ormat S	Select b	oit									
	1 = Rig														
		0 = Left justified. Six Least Significant bits of ADRESL are read as '0'.													
bit 6		ADCS2: A/D Clock Divide by 2 Select bit													
		 1 = A/D clock source is divided by two when system clock is used 0 = Disabled 													
bit 5	VCFG1	VCFG1: Voltage Reference Configuration bit 1													
	0 = VR 1 = VR					Vref-	(RA2)							
bit 4	VCFG							,							
	0 = VR		•		•										
	1 = VR	EF+ is d	connect	ted to e	xternal	Vref	+ (RA	3)							
bit 3-0	PCFG<	<3:0>: /	A/D Po	rt Confi	guratio	n bits									
		AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
	0000	А	А	А	А	А	Α	А	А	А	А	А	Α	А	А
	0001	Α	Α	Α	Α	А	Α	А	А	Α	Α	А	Α	А	А
	0010	D	А	А	Α	А	А	А	А	Α	А	А	А	А	А
	0011	D	D	А	Α	А	А	А	А	А	А	А	А	А	А
	0100	D	D	D	Α	А	А	А	А	Α	А	А	А	А	А
	0101	D	D	D	D	А	A	A	А	Α	A	А	A	А	A
	0110	D	D	D	D	D	A	A	A	A	A	A	A	A	A
	0111	D	D	D	D	D	D	A	A	A	A	A	A	A	A
	1000	D D	D D	D D	D D	D D	D D	D D	A D	A A	A A	A A	A A	A A	A
	1001	D	D	D	D	D	D	D	D	D	A	A	A	A	A
	1010	D	D	D	D	D	D	D	D	D	D	A	A	A	A
	1100	D	D	D	D	D	D	D	D	D	D	D	A	A	A
	1101	D	D	D	D	D	D	D	D	D	D	D	D	A	A
	1110	D	D	D	D	D	D	D	D	D	D	D	D	D	А
	1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	Legend	d: A =	Analog	ı input, E	D = Digit	al I/O									
	•• •				-				40						

AN5 through AN7 are only available on the 40-pin product variant (PIC16F747 and PIC16F777). Note:

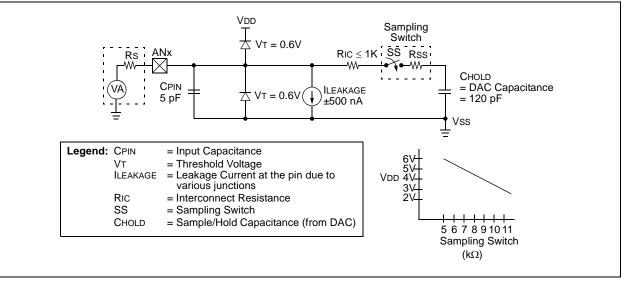
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2003-2013 Microchip Technology Inc.


12.1 A/D Acquisition Requirements

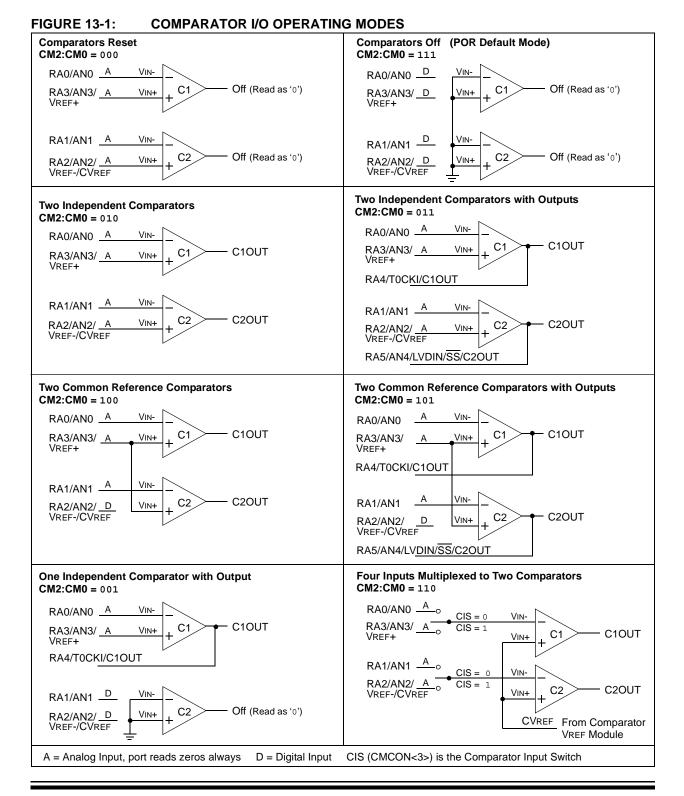
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-2. The maximum recommended impedance for analog sources is 2.5 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

EQUATION 12-1: ACQUISITION TIME

- Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.
 - 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
 - **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
 - **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.


FIGURE 12-2: ANALOG INPUT MODEL

13.1 Comparator Configuration

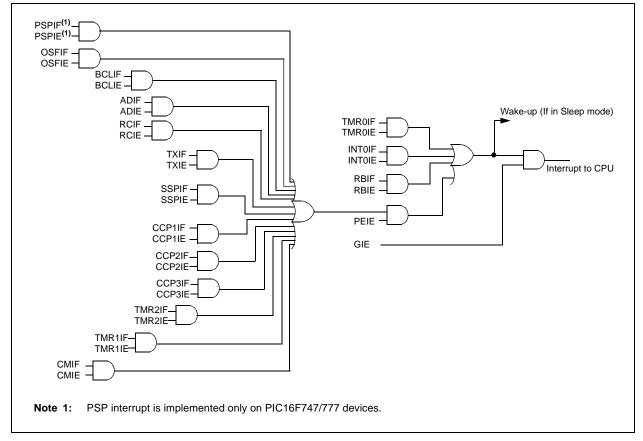
There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 13-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in the electrical specifications (Section 18.0 "Electrical Characteristics").

Note: Comparator interrupts should be disabled during a Comparator mode change. Otherwise, a false interrupt may occur.

15.15 Interrupts

The PIC16F7X7 has up to 17 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.


A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on Reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the Special Function Register, PIR1. The corresponding interrupt enable bits are contained in Special Function Register, PIE1 and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is serviced, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit, PEIE bit or the GIE bit.

FIGURE 15-11: INTERRUPT LOGIC

15.18.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the \overline{TO} bit will not be set and the \overline{PD} bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the **SLEEP** instruction completes. To determine whether a **SLEEP** instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

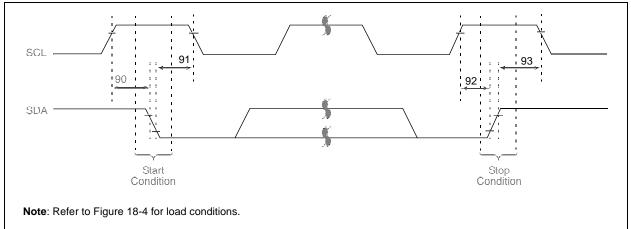
To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 15-16: WAKE-UP FROM SLEEP THROUGH INTERRUPT

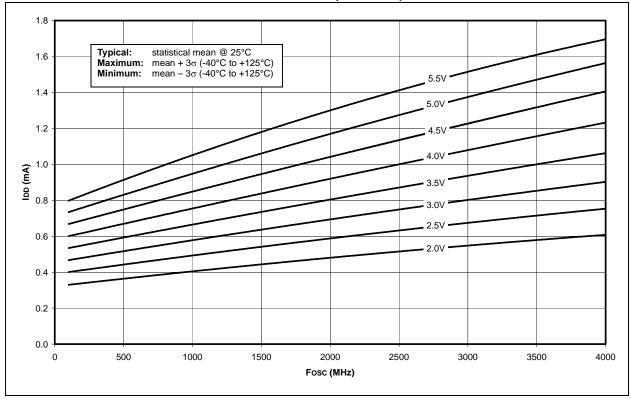
OSC1 CLKO ⁽⁴⁾ INT pin	; Q1 Q2 Q3 Q4 ; /~^	Q1 Q2 Q3 Q4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q1 /(Tost ⁽²⁾		Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4 /~_/~_/ \/	Q1 Q2 Q3 Q4;
INTF Flag (INTCON<1: GIE bit (INTCON<7: INSTRUCTIO) 		Processor ir Sleep			Interrupt Latency (Note 2)		
PC Instruction Fetched Instruction Executed	X PC { Inst(PC) = Sleep { Inst(PC - 1)	PC + 1 Inst(PC + 1) Sleep	<u>X PC -</u>	+ 2	(PC + 2 Inst(PC + 2) Inst(PC + 1)	PC + 2	X 0004h Inst(0004h) Dummy Cycle	X 0005h Inst(0005h) Inst(0004h)

Note 1: XT, HS or LP Oscillator mode assumed.

2: TOST = 1024 TOSC (drawing not to scale). This delay will not be there for RC Oscillator mode.

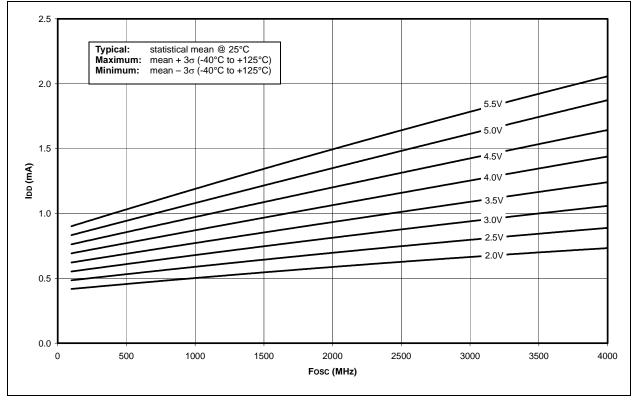

GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.
 CLKO is not available in these oscillator modes but shown here for timing reference.

Param No.	Symbol	Characterist	Min	Тур†	Мах	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Inpu	Тсү	—	—	ns		
71*	TscH	SCK Input High Time (Slave r	node)	Tcy + 20		—	ns	
72*	TscL	SCK Input Low Time (Slave m	node)	Tcy + 20		—	ns	
73*	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input	100	_	—	ns		
74*	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_		ns	
75*	TDOR	SDO Data Output Rise Time	PIC16F7X7 PIC16LF7X7	—	10 25	25 50	ns ns	
76*	TDOF	SDO Data Output Fall Time	·	—	10	25	ns	
77*	TssH2doZ	SS ↑ to SDO Output High-Imp	pedance	10	_	50	ns	
78*	TscR	SCK Output Rise Time (Master mode)	PIC16F7X7 PIC16LF7X7		10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Maste	r mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC16F7X7 PIC16LF7X7	—	_	50 145	ns ns	
81*	TDOV2SCH, TDOV2SCL	SDO Data Output Setup to SO	Тсү	_		ns		
82*	TssL2doV	SDO Data Output Valid after $\overline{SS} \downarrow Edge$		_		50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	1.5 Tcy + 40	_	—	ns		


TABLE 18-10: SPI MODE REQUIREMENTS

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

I²C[™] BUS START/STOP BITS TIMING FIGURE 18-16:



PIC16F7X7

FIGURE 19-4: MAXIMUM IDD vs. Fosc OVER VDD (XT MODE)

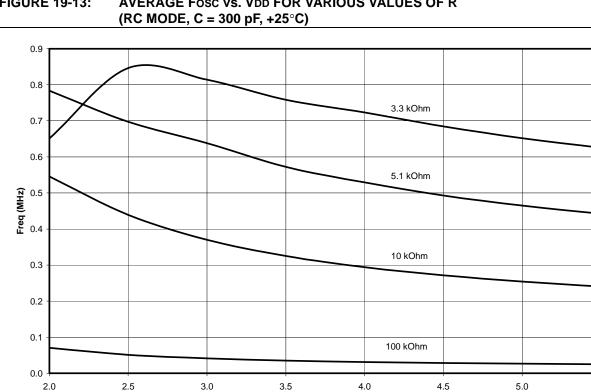
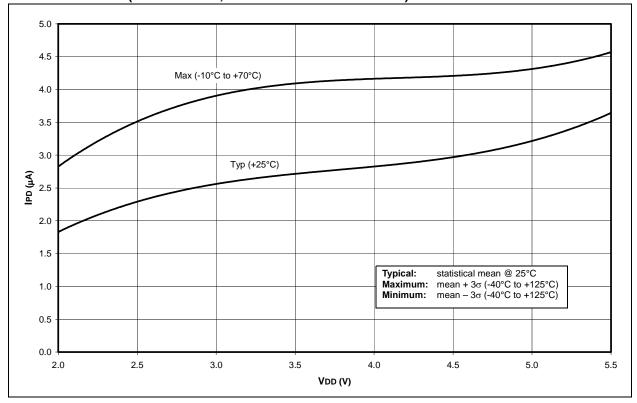



FIGURE 19-13: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R

FIGURE 19-14: △IPD TIMER1 OSCILLATOR, -10°C TO +70°C (SLEEP MODE, TMR1 COUNTER DISABLED)

VDD (V)


5.5

20.2 Package Details

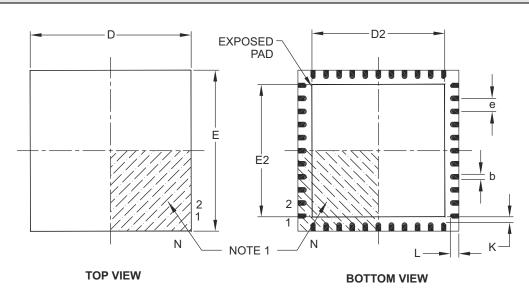
The following sections give the technical details of the packages.

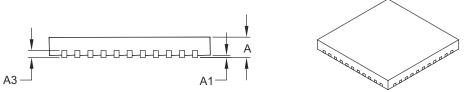
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES					
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		.100 BSC				
Top to Seating Plane	А	_	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	_	.430			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5	
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		44		
Pitch	e		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring15	5
Acquisition Requirements15	6
ADRESH Register15	4
Analog Port Pins6	8
Analog-to-Digital Converter15	
Associated Registers16	
Automatic Acquisition Time	
Calculating Acquisition Time	
Configuring Analog Port Pins	
Configuring the Module	
Conversion Clock	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions 15	
Delays	
Effects of a Reset16	
Internal Sampling Switch (Rss) Impedance	
Operation During Sleep16	0
Operation in Power-Managed Modes15	8
Source Impedance15	6
Time Delays15	6
Use of the CCP Trigger16	
Absolute Maximum Ratings	
ACKSTAT	
ACKSTAT Status Flag	
ADCON0 Register	0
GO/DONE Bit	1
Addressable Universal Synchronous Asynchronous	4
Receiver Transmitter. See AUSART	
ADRESL Register	4
Application Notes	
AN546 (Using the Analog-to-Digital (A/D)	
AN546 (Using the Analog-to-Digital (A/D) Converter)15	
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)15 AN552 (Implementing Wake-up on Key Stroke)5	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	6 9 3 2 4 3 2
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 28
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 280
AN546 (Using the Analog-to-Digital (A/D) Converter)	
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter)	693 243 2808 3
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (14 Asynchronous Receive (9-bit Mode) 14 Asynchronous Receive (14 13 Asynchronous Receive (14 14 Asynchronous Receive (14 14 </td <td>693243 2808 31</td>	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693243 2808 31
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 141, 14 Setup 14 Asynchronous Reception 14 Asynchronous Reception with Address 14 Asynchronous Reception with Address 14 Asynchronous Recept	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver 14 Asynchronous Mode 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 4 Asynchronous Reception 141, 14 Setup 14	693 2 4 3 2808 31 2
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Receiver (9-Bit Mode) 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address 141, 14 Setup 14 Asynchronous Reception 141, 14 Asynchronous Reception 14 Asynchronous Reception <td< td=""><td>693 2 4 3 2808 31 2 9</td></td<>	693 2 4 3 2808 31 2 9
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Intersectiver 14 Asynchronous Receiver 14 Asynchronous Receiver 14 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Transmission 13 Associated Registers 13 <t< td=""><td>693 2 4 3 2808 31 2 99</td></t<>	693 2 4 3 2808 31 2 99
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Asynchronous Rec	
AN546 (Using the Analog-to-Digital (A/D) Converter) 15 AN552 (Implementing Wake-up on Key Stroke) 5 AN556 (Implementing a Table Read) 2 AN607 (Power-up Trouble Shooting) 17 Assembler 20 AUSART 20 Address Detect Enable (ADDEN Bit) 13 Addressable Universal Synchronous 13 Asynchronous Receiver Transmitter 13 Asynchronous Receiver Transmitter 13 Receiver 14 Transmitter 13 Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Receive with Address Detect. SeeAsynchronous Receive (9-bit Mode) Asynchronous Reception 14 Associated Registers 141, 14 Setup 14 Asynchronous Reception with Address 14 Detect Setup 14 Asynchronous Reception with Address 14 Asynchronous Reception with Address 14 Asynchronous Reception Mith Address 14 Asynchronous Reception Mith Address 14 Asynchronous Reception Mith Address <td< td=""><td></td></td<>	

Baud Rates, Asynchronous Mode	
(BRGH = 0)	136
Baud Rates, Asynchronous Mode	
(BRGH = 1)	136
High Baud Rate Select (BRGH Bit)	133
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 0)	137
INTRC Baud Rates, Asynchronous Mode	
(BRGH = 1)	137
Sampling	
Clock Source Select (CSRC Bit)	133
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	134
Receive Enable, 9-Bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 133,	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Reception	
Transmission	144
Synchronous Master Reception	
Associated Registers	146
Setup	
Synchronous Master Transmission	
Associated Registers	145
Setup	
Synchronous Slave Mode	
Reception	149
Transmit	
Synchronous Slave Reception	
Associated Registers	149
Setup	
Synchronous Slave Transmission	
Associated Registers	148
Setup	148
Transmit Data, 9th Bit (TX9D)	133
Transmit Enable (TXEN Bit)	
Transmit Enable, 9-Bit (TX9 Bit)	133
Transmit Shift Register Status (TRMT Bit)	133

В

Banking, Data Memory	15
Baud Rate Generator	119
BF	123
BF Status Flag	123
Block Diagrams	
A/D	155
Analog Input Model	
AUSART Receive	
AUSART Transmit	
Baud Rate Generator	
Capture Mode Operation	
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Compare	
Fail-Safe Clock Monitor	189
In-Circuit Serial Programming Connections	192
Interrupt Logic	184
Low-Voltage Detect (LVD)	
Low-Voltage Detect (LVD) with External Input.	175
Low-Voltage Detect Characteristics	
MSSP (I ² C Master Mode)	117