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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1826/27
3.0 MEMORY ORGANIZATION

There are three types of memory in PIC16(L)F1826/27:
Data Memory, Program Memory and Data EEPROM
Memory(1). 

• Program Memory

• Data Memory

- Core Registers

- Special Function Registers

- General Purpose RAM

- Common RAM

- Device Memory Maps

- Special Function Registers Summary

• Data EEPROM memory(1)

The following features are associated with access and
control of program memory and data memory:

• PCL and PCLATH

• Stack

• Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program
counter capable of addressing a 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented for the PIC16(L)F1826/27 family.
Accessing a location above these boundaries will cause
a wrap-around within the implemented memory space.
The Reset vector is at 0000h and the interrupt vector is
at 0004h (see Figures 3-1 and 3-2).

 

Note 1: The Data EEPROM Memory and the
method to access Flash memory through
the EECON registers is described in
Section 11.0 “Data EEPROM and Flash
Program Memory Control”.

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device Program Memory Space (Words) Last Program Memory Address

PIC16(L)F1826 2,048 07FFh

PIC16(L)F1827 4,096 0FFFh
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3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by set-
ting bit 7 of the FSRxH register and reading the match-
ing INDFx register. The MOVIW instruction will place the
lower 8 bits of the addressed word in the W register.
Writes to the program memory cannot be performed via
the INDF registers. Instructions that access the pro-
gram memory via the FSR require one extra instruction
cycle to complete. Example 3-2 demonstrates access-
ing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a
location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM 
MEMORY VIA FSR

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-3):

• 12 core registers

• 20 Special Function Registers (SFR)

• Up to 80 bytes of General Purpose RAM (GPR) 

• 16 bytes of common RAM

The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as ‘0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.5 “Indirect
Addressing” for more information.

Data Memory uses a 12-bit address. The upper 7-bit of
the address define the Bank address and the lower
5-bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Table 3-2. For for detailed
information, see Table 3-5.

TABLE 3-2: CORE REGISTERS

constants
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3

my_function
;… LOTS OF CODE…
MOVLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants
MOVWF FSR1H
MOVIW 0[FSR1]

;THE PROGRAM MEMORY IS IN W

Addresses BANKx

x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
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3.4 Stack

All devices have a 16-level x 15-bit wide hardware
stack (refer to Figures 3-5 through 3-8). The stack
space is not part of either program or data space. The
PC is PUSHed onto the stack when CALL or CALLW
instructions are executed or an interrupt causes a
branch. The stack is POPed in the event of a RETURN,
RETLW or a RETFIE instruction execution. PCLATH is
not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN
bit is programmed to ‘0‘ (Configuration Word 2). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an Over-
flow/Underflow, regardless of whether the Reset is
enabled.

3.4.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is 5 bits to allow detection of
overflow and underflow.

During normal program operation, CALL, CALLW and
Interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR. At any
time STKPTR can be inspected to see how much stack
is left. The STKPTR always points at the currently used
place on the stack. Therefore, a CALL or CALLW will
increment the STKPTR and then write the PC, and a
return will unload the PC and then decrement STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples
of accessing the stack.

FIGURE 3-5: ACCESSING THE STACK EXAMPLE 1

Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.

Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.

TOSH:TOSL

TOSH:TOSL

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x03

0x02

0x01

0x00

0x04

0x05

0x06

0x07

0x1F

Stack Reset Disabled
(STVREN  = 0)

Stack Reset Enabled
(STVREN  = 1)0x0000

Initial Stack Configuration:

After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL registers will return ‘0’. If
the Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL registers will
return the contents of stack address 0x0F.

STKPTR = 0x1F

STKPTR = 0x1F
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FIGURE 3-8: ACCESSING THE STACK EXAMPLE 4

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Word 2 is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the sixteenth level or POPed
beyond the first level, setting the appropriate bits
(STKOVF or STKUNF, respectively) in the PCON
register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:

• Traditional Data Memory

• Linear Data Memory

• Program Flash Memory

TOSH:TOSL

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x03

0x02

0x01

0x00

0x04

0x05

0x06

0x07

Return Address

When the stack is full, the next CALL or
interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap and overwrite the
return address at 0x00. If the Stack 
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.

STKPTR = 0x10Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address
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TABLE 7-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BORCON SBOREN — — — — — — BORRDY 75

PCON STKOVF STKUNF — — RMCLR RI POR BOR 79

STATUS — — — TO PD Z DC C 21

WDTCON — — WDTPS4 WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN 99

Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets.
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
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8.0 INTERRUPTS

The interrupt feature allows certain events to preempt
normal program flow. Firmware is used to determine
the source of the interrupt and act accordingly. Some
interrupts can be configured to wake the MCU from
Sleep mode.

This chapter contains the following information for
Interrupts:

• Operation

• Interrupt Latency

• Interrupts During Sleep

• INT Pin

• Automatic Context Saving

Many peripherals produce Interrupts. Refer to the
corresponding chapters for details.

A block diagram of the interrupt logic is shown in
Figure 8-1.

FIGURE 8-1: INTERRUPT LOGIC 
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NOTES:
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23.5 Carrier Source Polarity Select

The signal provided from any selected input source for
the carrier high and carrier low signals can be inverted.
Inverting the signal for the carrier high source is
enabled by setting the MDCHPOL bit of the MDCARH
register. Inverting the signal for the carrier low source is
enabled by setting the MDCLPOL bit of the MDCARL
register.

23.6 Carrier Source Pin Disable

Some peripherals assert control over their correspond-
ing output pin when they are enabled. For example,
when the CCP1 module is enabled, the output of CCP1
is connected to the CCP1 pin.

This default connection to a pin can be disabled by set-
ting the MDCHODIS bit in the MDCARH register for the
carrier high source and the MDCLODIS bit in the
MDCARL register for the carrier low source.

23.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as
the source for the modulator signal. This gives the user
the ability to program the value used for modulation.

23.8 Modulator Source Pin Disable

The modulator source default connection to a pin can
be disabled by setting the MDMSODIS bit in the
MDSRC register.

23.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT
pin can also be inverted. Inverting the modulated out-
put signal is enabled by setting the MDOPOL bit of the
MDCON register.

23.10 Slew Rate Control

The slew rate limitation on the output port pin can be
disabled. The slew rate limitation can be removed by
clearing the MDSLR bit in the MDCON register.

23.11 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The
DSM can still operate during Sleep, if the Carrier and
Modulator input sources are also still operable during
Sleep.

23.12 Effects of a Reset

Upon any device Reset, the data signal modulator
module is disabled. The user's firmware is responsible
for initializing the module before enabling the output.
The registers are reset to their default values.
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24.4.5 PROGRAMMABLE DEAD-BAND 
DELAY MODE

In Half-Bridge applications where all power switches
are modulated at the PWM frequency, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on, and the
other turned off), both switches may be on for a short
period of time until one switch completely turns off.
During this brief interval, a very high current
(shoot-through current) will flow through both power
switches, shorting the bridge supply. To avoid this
potentially destructive shoot-through current from
flowing during switching, turning on either of the power
switches is normally delayed to allow the other switch
to completely turn off.

In Half-Bridge mode, a digitally programmable
dead-band delay is available to avoid shoot-through
current from destroying the bridge power switches. The
delay occurs at the signal transition from the non-active
state to the active state. See Figure 24-16 for
illustration. The lower seven bits of the associated
PWMxCON register (Register 24-4) sets the delay
period in terms of microcontroller instruction cycles
(TCY or 4 TOSC).

FIGURE 24-16: EXAMPLE OF 
HALF-BRIDGE PWM 
OUTPUT

FIGURE 24-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS
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Note 1: At this time, the TMRx register is equal to the
PRx register.

2: Output signals are shown as active-high.
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Standard Half-Bridge Circuit (“Push-Pull”)
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25.4.5 START CONDITION

The I2C specification defines a Start condition as a
transition of SDAx from a high to a low state while
SCLx line is high. A Start condition is always gener-
ated by the master and signifies the transition of the
bus from an Idle to an Active state. Figure 25-10
shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the
module samples the SDAx line low before asserting it
low. This does not conform to the I2C Specification that
states no bus collision can occur on a Start.

25.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from
low-to-high state while the SCLx line is high.

25.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid.
A master can issue a Restart if it wishes to hold the
bus after terminating the current transfer. A Restart
has the same effect on the slave that a Start would,
resetting all slave logic and preparing it to clock in an
address. The master may want to address the same or
another slave.

In 10-bit Addressing Slave mode a Restart is required
for the master to clock data out of the addressed
slave. Once a slave has been fully addressed, match-
ing both high and low address bytes, the master can
issue a Restart and the high address byte with the
R/W bit set. The slave logic will then hold the clock
and prepare to clock out data.

After a full match with R/W clear in 10-bit mode, a prior
match flag is set and maintained. Until a Stop condi-
tion, a high address with R/W clear, or high address
match fails.

25.4.8 START/STOP CONDITION INTERRUPT 
MASKING

The SCIE and PCIE bits of the SSPxCON3 register
can enable the generation of an interrupt in Slave
modes that do not typically support this function. Slave
modes where interrupt on Start and Stop detect are
already enabled, these bits will have no effect. 

FIGURE 25-12: I2C START AND STOP CONDITIONS

FIGURE 25-13: I2C RESTART CONDITION 

Note: At least one SCLx low time must appear
before a Stop is valid, therefore, if the SDAx
line goes low then high again while the SCLx
line stays high, only the Start condition is
detected.
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25.5.3.3 7-bit Transmission with Address 
Hold Enabled

Setting the AHEN bit of the SSPxCON3 register
enables additional clock stretching and interrupt gen-
eration after the 8th falling edge of a received match-
ing address. Once a matching address has been
clocked in, CKP is cleared and the SSPxIF interrupt is
set.

Figure 25-18 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.

2. Master sends Start condition; the S bit of SSPx-
STAT is set; SSPxIF is set if interrupt on Start
detect is enabled.

3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCLx line the
CKP bit is cleared and SSPxIF interrupt is gen-
erated.

4. Slave software clears SSPxIF.

5. Slave software reads ACKTIM bit of SSPxCON3
register, and R/W and D/A of the SSPxSTAT
register to determine the source of the interrupt.

6. Slave reads the address value from the SSPx-
BUF register clearing the BF bit.

7. Slave software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPxCON2 register accordingly.

8. Slave sets the CKP bit releasing SCLx.

9. Master clocks in the ACK value from the slave.

10. Slave hardware automatically clears the CKP bit
and sets SSPxIF after the ACK if the R/W bit is
set.

11. Slave software clears SSPxIF.

12. Slave loads value to transmit to the master into
SSPxBUF setting the BF bit.

13. Slave sets CKP bit releasing the clock.

14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCLx pulse.

15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPxCON2 register.

16. Steps 10-15 are repeated for each byte transmit-
ted to the master from the slave.

17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.

Note: SSPxBUF cannot be loaded until after the
ACK.

Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCLx
line to receive a Stop.
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25.5.4 SLAVE MODE 10-BIT ADDRESS 
RECEPTION

This section describes a standard sequence of events
for the MSSPx module configured as an I2C Slave in
10-bit Addressing mode. 

Figure 25-19 is used as a visual reference for this
description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.

2. Master sends Start condition; S bit of SSPxSTAT
is set; SSPxIF is set if interrupt on Start detect is
enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSPxSTAT register is set.

4. Slave sends ACK and SSPxIF is set.

5. Software clears the SSPxIF bit.

6. Software reads received address from SSPx-
BUF clearing the BF flag.

7. Slave loads low address into SSPxADD,
releasing SCLx.

8. Master sends matching low address byte to the
Slave; UA bit is set.

9. Slave sends ACK and SSPxIF is set.

10. Slave clears SSPxIF.

11. Slave reads the received matching address
from SSPxBUF clearing BF.

12. Slave loads high address into SSPxADD.

13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the 9th SCLx
pulse; SSPxIF is set.

14. If SEN bit of SSPxCON2 is set, CKP is cleared
by hardware and the clock is stretched.

15. Slave clears SSPxIF.

16. Slave reads the received byte from SSPxBUF
clearing BF.

17. If SEN is set the slave sets CKP to release the
SCLx.

18. Steps 13-17 repeat for each received byte.

19. Master sends Stop to end the transmission.

25.5.5 10-BIT ADDRESSING WITH ADDRESS OR 
DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPxADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCLx line is held low are the
same. Figure 25-20 can be used as a reference of a
slave in 10-bit addressing with AHEN set. 

Figure 25-21 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSPxADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSPxIF
and UA are still set so that the slave soft-
ware can set SSPxADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
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25.6.7 I2C MASTER MODE RECEPTION

Master mode reception is enabled by programming the
Receive Enable bit, RCEN bit of the SSPxCON2
register.       

The Baud Rate Generator begins counting and on each
rollover, the state of the SCLx pin changes
(high-to-low/low-to-high) and data is shifted into the
SSPxSR. After the falling edge of the eighth clock, the
receive enable flag is automatically cleared, the con-
tents of the SSPxSR are loaded into the SSPxBUF, the
BF flag bit is set, the SSPxIF flag bit is set and the Baud
Rate Generator is suspended from counting, holding
SCLx low. The MSSPx is now in Idle state awaiting the
next command. When the buffer is read by the CPU,
the BF flag bit is automatically cleared. The user can
then send an Acknowledge bit at the end of reception
by setting the Acknowledge Sequence Enable, ACKEN
bit of the SSPxCON2 register.

25.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address
or data byte is loaded into SSPxBUF from SSPxSR. It
is cleared when the SSPxBUF register is read.

25.6.7.2 SSPxOV Status Flag

In receive operation, the SSPxOV bit is set when 8 bits
are received into the SSPxSR and the BF flag bit is
already set from a previous reception.

25.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is
already in progress (i.e., SSPxSR is still shifting in a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur).

25.6.7.4 Typical Receive Sequence:

1. The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.

2. SSPxIF is set by hardware on completion of the
Start. 

3. SSPxIF is cleared by software.

4. User writes SSPxBUF with the slave address to
transmit and the R/W bit set.

5. Address is shifted out the SDAx pin until all 8 bits
are transmitted. Transmission begins as soon
as SSPxBUF is written to.

6. The MSSPx module shifts in the ACK bit from
the slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.

7. The MSSPx module generates an interrupt at
the end of the ninth clock cycle by setting the
SSPxIF bit.

8. User sets the RCEN bit of the SSPxCON2 regis-
ter and the Master clocks in a byte from the slave.

9. After the 8th falling edge of SCLx, SSPxIF and
BF are set.

10. Master clears SSPxIF and reads the received
byte from SSPxUF, clears BF.

11. Master sets ACK value sent to slave in ACKDT
bit of the SSPxCON2 register and initiates the
ACK by setting the ACKEN bit.

12. Masters ACK is clocked out to the Slave and
SSPxIF is set.

13. User clears SSPxIF.

14. Steps 8-13 are repeated for each received byte
from the slave.

15. Master sends a not ACK or Stop to end
communication.

Note: The MSSPx module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded. 
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26.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH mark state which
represents a ‘1’ data bit, and a VOL space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is 8 bits. Each transmitted bit persists for a period
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud
Rate Generator is used to derive standard baud rate
frequencies from the system oscillator. See Table 26-5
for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.

26.1.1 EUSART ASYNCHRONOUS 
TRANSMITTER

The EUSART transmitter block diagram is shown in
Figure 26-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREG register.

26.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:

• TXEN = 1

• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the TXEN bit of the TXSTA register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART and automatically
configures the TX/CK I/O pin as an output. If the TX/CK
pin is shared with an analog peripheral, the analog I/O
function must be disabled by clearing the corresponding
ANSEL bit.  

26.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the
TXREG register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREG until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREG is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREG.

26.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with
the SCKP bit of the BAUDCON register. The default
state of this bit is ‘0’ which selects high true transmit idle
and data bits. Setting the SCKP bit to ‘1’ will invert the
transmit data resulting in low true idle and data bits. The
SCKP bit controls transmit data polarity in
Asynchronous mode only. In Synchronous mode, the
SCKP bit has a different function. See Section 26.4.1.2
“Clock Polarity”.

26.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set
whenever the EUSART transmitter is enabled and no
character is being held for transmission in the TXREG.
In other words, the TXIF bit is only clear when the TSR
is busy with a character and a new character has been
queued for transmission in the TXREG. The TXIF flag bit
is not cleared immediately upon writing TXREG. TXIF
becomes valid in the second instruction cycle following
the write execution. Polling TXIF immediately following
the TXREG write will return invalid results. The TXIF bit
is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE
interrupt enable bit of the PIE1 register. However, the
TXIF flag bit will be set whenever the TXREG is empty,
regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE
bit only when there is more data to send. Clear the
TXIE interrupt enable bit upon writing the last character
of the transmission to the TXREG.

Note: The TXIF Transmitter Interrupt flag is set
when the TXEN enable bit is set.
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Supply Current (IDD)(1, 2)

D014 — 260 475 A 1.8 FOSC = 4 MHz
EC Oscillator mode,
Medium-power mode

— 550 800 A 3.0

D014 — 375 655 A 1.8 FOSC = 4 MHz
EC Oscillator mode 
Medium-power mode

— 600 800 A 3.0

— 650 930 A 5.0

D015 — 3.6 10 A 1.8 FOSC = 31 kHz
LFINTOSC mode— 7.0 15 A 3.0

D015 — 21 42 A 1.8 FOSC = 31 kHz
LFINTOSC mode — 27 55 A 3.0

— 28 60 A 5.0

D016 — 110 210 A 1.8 FOSC = 500 kHz
MFINTOSC mode— 150 250 A 3.0

D016 — 150 250 A 1.8 FOSC = 500 kHz
MFINTOSC mode — 210 345 A 3.0

— 270 425 A 5.0

D017* — 0.8 1.5 mA 1.8 FOSC = 8 MHz
HFINTOSC mode— 1.3 2.4 mA 3.0

D017* — 1.0 2.0 mA 1.8 FOSC = 8 MHz
HFINTOSC mode — 1.5 2.6 mA 3.0

— 1.7 2.8 mA 5.0

D018 — 1.2 2.5 mA 1.8 FOSC = 16 MHz
HFINTOSC mode— 2.5 3.75 mA 3.0

D018 — 1.7 2.23 mA 1.8 FOSC = 16 MHz
HFINTOSC mode — 2.7 4.3 mA 3.0

— 3.0 4.6 mA 5.0

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended) (Continued)

PIC16LF1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

PIC16F1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

Param
No.

Device 
Characteristics

Min. Typ† Max. Units
Conditions

VDD Note

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from 
rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading 
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current 
consumption.

3: 8 MHz internal RC oscillator with 4x PLL enabled.
4: 8 MHz crystal oscillator with 4x PLL enabled.
5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended 

by the formula IR = VDD/2REXT (mA) with REXT in k.
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30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down)

PIC16LF1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

PIC16F1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

Param
No.

Device Characteristics Min. Typ†
Max.

+85°C
Max.

+125°C
Units

Conditions

VDD Note

Power-down Base Current (IPD)(2)

D022 — 0.02 1.0 4.0 A 1.8 WDT, BOR, FVR, and T1OSC 
disabled, all Peripherals Inactive— 0.03 1.1 7.0 A 3.0

D022 — 15 35 50 A 1.8 WDT, BOR, FVR, and T1OSC 
disabled, all Peripherals Inactive— 18 40 60 A 3.0

— 19 45 70 A 5.0

D023 — 0.5 1.1 5.0 A 1.8 LPWDT Current (Note 1)

— 0.8 2.0 8.0 A 3.0

D023 — 16 35 50 A 1.8 LPWDT Current (Note 1)

— 19 40 60 A 3.0

— 20 45 70 A 5.0

D023A — 8.5 23 32 A 1.8 FVR current (Note 1)

— 8.5 26 40 A 3.0

D023A — 32 62 66 A 1.8 FVR current (Note 1)

— 39 70 80 A 3.0

— 70 110 120 A 5.0

D024 — 8.1 14 20 A 3.0 BOR Current (Note 1)

D024 — 34 57 70 A 3.0 BOR Current (Note 1)

— 67 100 115 A 5.0

D025 — 0.6 1.5 5.0 A 1.8 T1OSC Current (Note 1)

— 0.8 2.5 8.0 A 3.0

D025 — 16 35 50 A 1.8 T1OSC Current (Note 1)

— 21 40 60 A 3.0

— 25 45 70 A 5.0

D026 — 0.1 1.1 5.0 A 1.8 A/D Current (Note 1, Note 3), no 
conversion in progress— 0.1 2.0 8.0 A 3.0

D026 — 16 35 50 A 1.8 A/D Current (Note 1, Note 3), no 
conversion in progress— 21 40 60 A 3.0

— 25 45 70 A 5.0

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are 

not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is 

enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max 
values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with 
the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.
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Power-down Base Current (IPD)(2)

D026A* — 250 — — A 1.8 A/D Current (Note 1, Note 3), 
conversion in progress— 250 — — A 3.0

D026A* — 280 — — A 1.8 A/D Current (Note 1, Note 3), 
conversion in progress— 280 — — A 3.0

— 280 — — A 5.0

D027 — 3.5 6 8 A 1.8 Cap Sense Low Power
Oscillator mode (Note 1)— 7 10 14 A 3.0

D027 — 4.3 36 38 A 1.8 Cap Sense Low Power
Oscillator mode (Note 1)— 5.8 39 42 A 3.0

— 6.3 42 45 A 5.0

D027A — 4.2 8 10 A 1.8 Cap Sense Medium Power
Oscillator mode (Note 1)— 6 12 15 A 3.0

D027A — 7.4 38 40 A 1.8 Cap Sense Medium Power
Oscillator mode (Note 1)— 9.7 42 43 A 3.0

— 10.4 46 48 A 5.0

D027B — 6 10 15 A 1.8 Cap Sense High Power
Oscillator mode (Note 1)— 10 14 20 A 3.0

D027B — 17 44 50 A 1.8 Cap Sense High Power
Oscillator mode (Note 1)— 41 68 80 A 3.0

— 50 78 90 A 5.0

D028 — 6.9 11 15 A 1.8 Comparator Current, Low Power 
mode, one comparator enabled 
(Note 1)

— 7.0 13 16 A 3.0

D028 — 24 45 60 A 1.8 Comparator Current, Low Power 
mode, one comparator enabled 
(Note 1)

— 24.5 60 70 A 3.0

— 25 65 75 A 5.0

D028A — 7.0 12 16 A 1.8 Comparator Current, Low Power 
mode, two comparators enabled 
(Note 1)

— 7.2 14 17 A 3.0

D028A — 24 45 60 A 1.8 Comparator Current, Low Power 
mode, two comparators enabled 
(Note 1)

— 24.5 60 70 A 3.0

— 25 65 75 A 5.0

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down) (Continued)

PIC16LF1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

PIC16F1826/27
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for industrial

-40°C  TA  +125°C for extended

Param
No.

Device Characteristics Min. Typ†
Max.

+85°C
Max.

+125°C
Units

Conditions

VDD Note

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are 

not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is 

enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max 
values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with 
the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.
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FIGURE 30-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

VBOR

Vdd

(Device in Brown-out Reset) (Device not in Brown-out Rese

33(1)

Note 1: 64 ms delay only if PWRTE bit in the Configuration Word 1 is programmed to ‘0’. 
2 ms delay if PWRTE = 0 and VREGEN = 1.

Reset

(due to BOR)

VBOR and VHYST

37
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FIGURE 30-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING       

TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS    

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING        

TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS       

Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C

Param. 
No.

Symbol Characteristic Min. Max. Units Conditions

US120 TCKH2DTV SYNC XMIT (Master and Slave)
Clock high to data-out valid

3.0-5.5V — 80 ns

1.8-5.5V — 100 ns

US121 TCKRF Clock out rise time and fall time 
(Master mode)

3.0-5.5V — 45 ns

1.8-5.5V — 50 ns

US122 TDTRF Data-out rise time and fall time 3.0-5.5V — 45 ns

1.8-5.5V — 50 ns

Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C

Param. 
No.

Symbol Characteristic Min. Max. Units Conditions

US125 TDTV2CKL SYNC RCV (Master and Slave)
Data-hold before CK  (DT hold time) 10 — ns

US126 TCKL2DTL Data-hold after CK  (DT hold time) 15 — ns

Note:  Refer to Figure 30-5 for load conditions.

US121 US121

US120 US122

CK

DT

Note: Refer to Figure 30-5 for load conditions.

US125

US126

CK

DT
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NOTES:
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