

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TADLL	J-0. JI			I KEGISTI				וש			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8	Bank 8										
40Ch	_	Unimplement	ed							_	_
40Dh	_	Unimplement	ed							_	_
40Eh	_	Unimplement	ed							_	_
40Fh	_	Unimplement	ed							_	_
410h	_	Unimplement	ed							_	_
411h	_	Unimplement	ed							_	_
412h	_	Unimplement	ed							—	_
413h	_	Unimplement	ed							—	_
414h	_	Unimplement	ed							—	_
415h	TMR4 ⁽¹⁾	Timer4 Modu	le Register							0000 0000	0000 0000
416h	PR4 ⁽¹⁾	Timer4 Perio	d Register							1111 1111	1111 1111
417h	T4CON ⁽¹⁾	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	-000 0000
418h	_	Unimplement	ed							—	_
419h	_	Unimplement	ed							_	_
41Ah	_	Unimplement	ed							—	_
41Bh	_	Unimplement	Unimplemented —						_		
41Ch	TMR6 ⁽¹⁾	Timer6 Modu	Timer6 Module Register 0000 0000 000						0000 0000		
41Dh	PR6 ⁽¹⁾	Timer6 Period Register 1111 111 11						1111 1111			
41Eh	T6CON ⁽¹⁾	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	-000 0000	-000 0000
41Fh	_	Unimplement	ed							_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-6:**

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: PIC16(L)F1827 only.

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1/1	
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	
		bit 13		1 1			bit 8	
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>		
bit 7							bit C	
Legend:								
R = Readab	ole bit	P = Programn	nable bit	U = Unimplem	ented bit, read	d as '1'		
'0' = Bit is c	leared	'1' = Bit is set		-n = Value whe	en blank or aft	er Bulk Erase		
bit 13	1 = Fail-Safe 0 = Fail-Safe	-Safe Clock Mo Clock Monitor i Clock Monitor i	s enabled s disabled	bit				
bit 12	1 = Internal/E	al External Swite External Switche External Switche	ver mode is e					
bit 11	If FOSC confi This bit is All other FOS	<u>SC modes</u> : OUT function is	e set to LP, X OUT function i disabled. I/O	<u>T. HS modes</u> : s disabled. Oscil function on the (he CLKOUT pin		on the CLKOUT	pin.	
bit 10-9	11 = BOR en 10 = BOR en	abled during op ntrolled by SBC	eration and d	its lisabled in Sleep e BORCON regi				
bit 8	1 = Data mer	ode Protection nory code prote nory code prote	ction is disab					
bit 7		otection bit memory code p memory code p						
bit 6								
bit 5	1 = PWRT di	PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled						
bit 4-3	 0 = PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled 							

EXAM	PLE 11-4:	ERASING ONI	E ROW OF PROGRAM MEMORY -
		routine assumes	-
; 1. A	valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2. AI	ODRH and AD	DRL are located	in shared data memory 0x70 - 0x7F (common RAM)
	BCF BANKSEL MOVF MOVWF MOVF BSF	INTCON,GIE EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD	 ; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory
	BCF	EECON1, EEFGD	; Not configuration space
	BSF	EECON1, FREE	; Specify an erase operation
	BSF	EECON1, WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	EECON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

13.6 Interrupt-On-Change Registers

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

'1' = Bit is set		'0' = Bit is clea	ared					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7	•	•		•			bit 0	
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	

bit 7-0

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin.
 Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

16.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "A/D Acquisition Requirements".

EXAMPLE 16-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel AN0 MOVLW MOVWE ;Turn ADC On ADCON0 SampleTime ; Acquisiton delay CALL ADCON0, ADGO ; Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH ; BANKSEL ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTIO ;Store in GPR space

REGISTER 16-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	_	—	_	ADRE	S<9:8>	
bit 7	•						bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 16-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CSM)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

<u>**IF DACEN = 1**</u> $VOUT = \left((VSOURCE - VSOURCE -) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE - VSOURCE -$

IF DACEN = 0 and DACLPS = 1 and DACR[4:0] = 11111

VOUT = VSOURCE +

IF DACEN = 0 and DACLPS = 0 and DACR[4:0] = 00000

VOUT = VSOURCE -

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE - = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 29.0** "**Electrical Specifications**".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

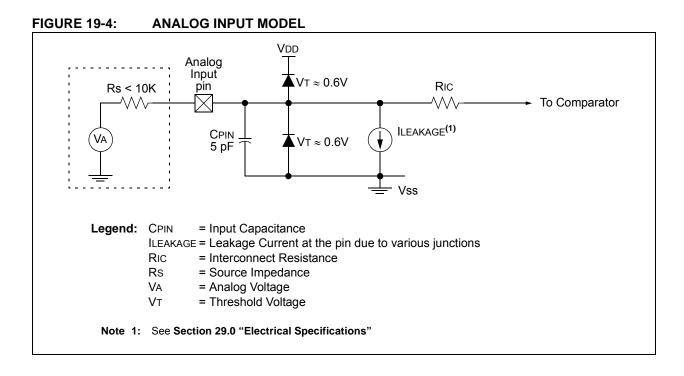
The DAC output voltage is determined by the equations in Equation 17-1.

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz


TABLE 18-1: SRCLK FREQUENCY TABLE

REGISTER 18-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	S = Bit is set only

bit 7	SRLEN: SR Latch Enable bit 1 = SR Latch is enabled 0 = SR Latch is disabled						
bit 6-4	SRCLK<2:0>: SR Latch Clock Divider bits 000 = Generates a 1 Fosc wide pulse every 4th Fosc cycle clock 001 = Generates a 1 Fosc wide pulse every 8th Fosc cycle clock 010 = Generates a 1 Fosc wide pulse every 16th Fosc cycle clock 011 = Generates a 1 Fosc wide pulse every 32nd Fosc cycle clock 100 = Generates a 1 Fosc wide pulse every 64th Fosc cycle clock 101 = Generates a 1 Fosc wide pulse every 128th Fosc cycle clock 110 = Generates a 1 Fosc wide pulse every 256th Fosc cycle clock 111 = Generates a 1 Fosc wide pulse every 512th Fosc cycle clock						
bit 3	SRQEN: SR Latch Q Output Enable bit <u>If SRLEN = 1</u> : 1 = Q is present on the SRQ pin 0 = External Q output is disabled <u>If SRLEN = 0</u> : SR Latch is disabled						
bit 2	SRNQEN: SR Latch Q Output Enable bit <u>If SRLEN = 1</u> : 1 = Q is present on the SRnQ pin 0 = External Q output is disabled <u>If SRLEN = 0</u> : SR Latch is disabled						
bit 1	 SRPS: Pulse Set Input of the SR Latch bit⁽¹⁾ 1 = Pulse set input for 1 Q-clock period 0 = No effect on set input. 						
bit 0	 SRPR: Pulse Reset Input of the SR Latch bit⁽¹⁾ 1 = Pulse reset input for 1 Q-clock period 0 = No effect on reset input. 						
Note 1: Se	t only, always reads back '0'.						

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0		
CxON	CxOUT	CxOE	CxPOL		CxSP	CxHYS	CxSYNC		
bit 7	·			·			bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is se	t	'0' = Bit is clea	ared						
bit 7	CxON: Com	parator Enable	bit						
	1 = Compara	ator is enabled a ator is disabled		no active pov	ver				
bit 6	CxOUT: Cor	nparator Output	bit						
		(inverted polar	<u>ity):</u>						
	1 = CxVP < 0 = CxVP >	-							
		<u>) (non-inverted p</u>	oolaritv):						
	1 = CxVP >	CxVN							
	0 = CxVP <	CxVN							
bit 5		parator Output I							
	drive the	is present on the e pin. Not affecte is internal only		Requires that	the associated T	RIS bit be clea	ired to actually		
bit 4		nparator Output	Polarity Selec	ct bit					
	1 = Compara	ator output is inv ator output is no	verted						
bit 3		nted: Read as '							
bit 2	CxSP: Com	parator Speed/P	ower Select b	it					
		ator operates in ator operates in							
bit 1	CxHYS: Cor	CxHYS: Comparator Hysteresis Enable bit							
	•	ator hysteresis							
	•	ator hysteresis							
bit 0		omparator Outp	•			<u> </u>			
					ronous to chang	ges on Timer1	clock source		
	Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous.								

REGISTER 19-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	91
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	96
PIE3 ⁽¹⁾	—	_	CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	94
PIR3 ⁽¹⁾	—	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	98
PR2	Timer2 Module Period Register								
PR4	Timer4 Mod	ule Period Re	gister						189*
PR6	Timer6 Mod	ule Period Re	gister						189*
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	191
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Register for the 8-bit TMR2 Time Base								189*
TMR4	Holding Register for the 8-bit TMR4 Time Base ⁽¹⁾							189*	
TMR6	Holding Reg	ister for the 8	-bit TMR6 Tin	ne Base ⁽¹⁾					189*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

R/W-0/	/0 R/W-0/0	R/W-1/1	R/W-0/0	R-0/0	U-0	U-0	R/W-0/0	
MDEN	N MDOE	MDSLR	MDOPOL	MDOUT	—		MDBIT	
bit 7							bit 0	
<u> </u>								
Legend:								
R = Read		W = Writable		•	mented bit, read			
	unchanged	x = Bit is unk		-n/n = Value	at POR and BOF	R/Value at all	other Resets	
'1' = Bit is	set	'0' = Bit is cle	ared					
bit 7		ulator Module E						
		or module is er		0 1 0	als			
		or module is di						
bit 6		ulator Module F	•	ble bit				
		or pin output er or pin output di						
bit 5		OUT Pin Slew		ait				
DIL 5		pin slew rate li	0					
		pin slew rate li						
bit 4		Iodulator Outpu	•					
		or output signa						
		or output signa		b				
bit 3	MDOUT: Mo	dulator Output	bit					
	Displays the	current output	value of the me	odulator modu	le. ⁽¹⁾			
bit 2-1	Unimpleme	nted: Read as	0'					
bit 0	MDBIT: Allo	MDBIT: Allows software to manually set modulation source input to module ⁽²⁾						
		or uses High C			·			
	0 = Modulat	or uses Low Ca	arrier source					
Note 1:	The modulated o	utput frequency	can be greate	r and asynchro	onous from the c	lock that upd	ates this	
	register bit, the bi							

REGISTER 23-1: MDCON: MODULATION CONTROL REGISTER

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
MDCLODIS	MDCLPOL	MDCLSYNC			MDCL	_<3:0>	
bit 7							bit 0
Lonondi							
Legend: R = Readable	hit	W = Writable bi	+	II = I Inimpler	nented bit, read	l as 'N'	
u = Bit is unch		x = Bit is unkno		•	at POR and BO		ther Resets
'1' = Bit is set	angeu	'0' = Bit is clear					
I – DILIS SEL			eu				
bit 7	MDCLODIS:	Modulator Low C	Carrier Out	out Disable bit			
		ignal driving the			ted by MDCL<3	3:0> of the MD	CARL register)
	is disable				-		
	0 = Output s is enable	ignal driving the p ed	peripheral o	output pin (selec	ted by MDCL<3	3:0> of the MD0	CARL register)
bit 6	MDCLPOL:	Modulator Low C	arrier Pola	rity Select bit			
		l low carrier signa					
		l low carrier signa					
bit 5		: Modulator Low	-				····
	1 = Modulato	or waits for a fallin rier	ng eage on	the low time carr	rier signal before	e allowing a sw	itch to the high
		or Output is not s	ynchronize	d to the low time	e carrier signal ⁽	1)	
bit 4	Unimplemer	ted: Read as '0'					
bit 3-0	MDCL<3:0>	Modulator Data H	High Carrie	r Selection bits ([1]		
	1111 = Res	erved. No chanr	nel connect	ed.			
	•						
	•						
	1000 = Res	erved. No chanr	nel connect	ed.			
		P4 output (PWM					
		P3 output (PWM					
		P2 output (PWM (P1 output (PWM (
		erence Clock mo					
	0010 = MD0	CIN2 port pin	-				
	0001 = MD0						
	0000 = Vss						

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	_		MDCH	<3:0>		200
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCL	<3:0>		201
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	_	_	MDBIT	198
MDSRC	MDMSODIS		—	—		MDMS	\$<3:0>		199

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

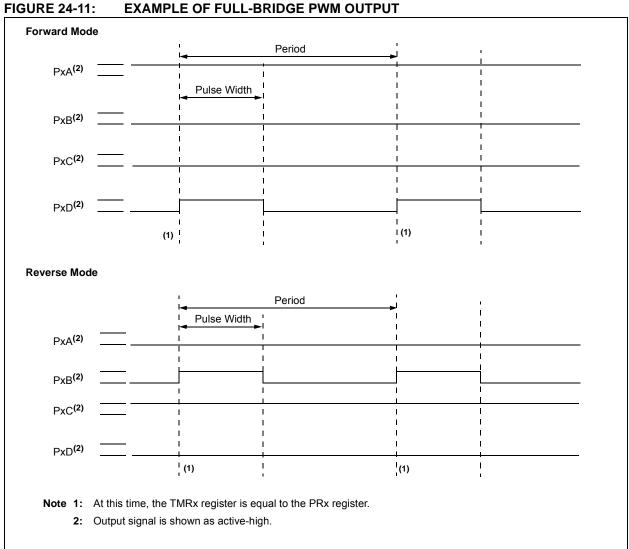


FIGURE 24-11:

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
_	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4		Steering Sync					
			occurs on next				
	0 = Output st	teering update	occurs at the b	eginning of the	e instruction cyc	le boundary	
bit 3		ering Enable bi					
	•		vaveform with p	olarity control	from CCPxM<1	1:0>	
	0 = PxD pin i	s assigned to p	port pin				
bit 2		ering Enable bi					
			vaveform with p	polarity control	from CCPxM<1	1:0>	
	•	s assigned to p	•				
bit 1	STRxB: Stee	ering Enable bi	t B				
	1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0>						
	0 = PxB pin i	s assigned to p	oort pin				
bit 0	STRxA: Steering Enable bit A						
	1 = PxA pin ł	nas the PWM v	vaveform with p	olarity control	from CCPxM<1	1:0>	
	0 = PxA pin i	s assigned to p	oort pin				
Note 1: 1	The PWM Steerin	a modo is avai	ilabla only whor		N register bits (~~DvM~3·2~ -	- 11 ond

REGISTER 24-5: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

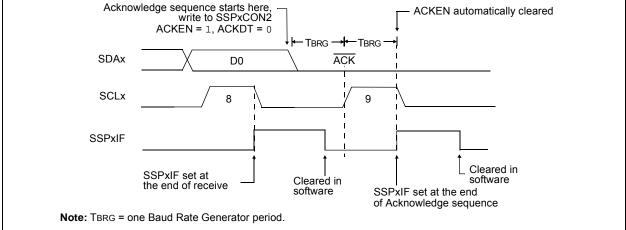
Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

25.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 25-29).

25.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


25.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 25-30).

25.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 25-30: ACKNOWLEDGE SEQUENCE WAVEFORM

NOTES:

27.1 Analog MUX

The capacitive sensing module can monitor up to 12 inputs. The capacitive sensing inputs are defined as CPS<11:0>. To determine if a frequency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<3:0> bits of the CPSCON1 register
- · Set the corresponding ANSEL bit
- · Set the corresponding TRIS bit
- · Run the software algorithm

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

27.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSOUT bit of the CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has three different current settings as defined by CPSRNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base
- Maximize the count differential in the timer during a change in frequency

27.3 Timer resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.4 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note: The fixed time base can not be generated by the timer resource that the capacitive sensing oscillator is clocking.

27.4.1 TIMER0

To select Timer0 as the timer resource for the capacitive sensing module:

- Set the T0XCS bit of the CPSCON0 register
- · Clear the TMR0CS bit of the OPTION register

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.4.2 TIMER1

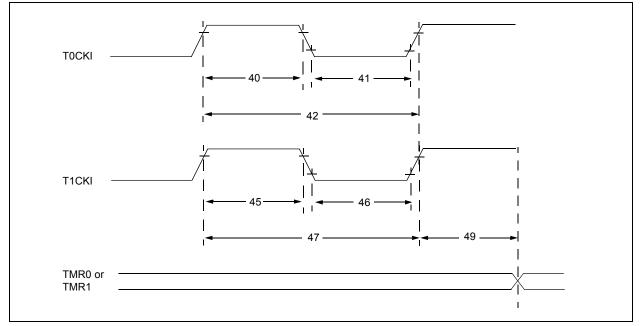
To select Timer1 as the timer resource for the capacitive sensing module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 gate, be used to develop the fixed time base required by the software portion of the capacitive sensing module. Refer to **Section 21.6.3 "Timer1 Gate Toggle Mode"** for additional information.

TABLE 27-1:	TIMER1 ENABLE FUNCTION
-------------	------------------------

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

TABLE 30-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS


	Standard Operating Conditions (unless otherwise stated) Dperating Temperature -40°C \leq TA \leq +125°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2	_	—	μS		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period (No Prescaler)	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used	
32	Tost	Oscillator Start-up Timer Period ^{(1), (2)}		1024		Tosc	(Note 3)	
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS		
35	VBOR	Brown-out Reset Voltage	2.38 1.80	2.5 1.9	2.73 2.11	V	BORV=2.5V BORV=1.9V	
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	0	3	35	μS	$V D D \leq V B O R$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - **3:** Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

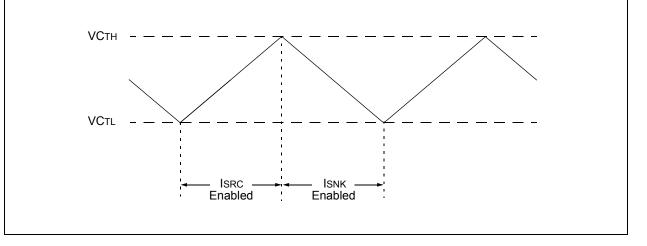

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	-3	-8	-15	μA	
			Medium	-0.8	-1.5	-3	μA	
			Low	-0.1	-0.3	-0.4	μA	
CS02	Isnk	Current Sink	High	2.5	7.5	14	μA	
			Medium	0.6	1.5	2.9	μA	
			Low	0.1	0.25	0.6	μA	
CS03	VСтн	Cap Threshold		-	0.8	_	mV	
CS04	VCTL	Cap Threshold			0.4		mV	
CS05	VCHYST		High	350	525	725	mV	
		(VCTH - VCTL)	Medium	250	375	500	mV	
			Low	175	300	425	mV	

TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-22: CAP SENSE OSCILLATOR

