

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.4 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.4 "Stack**"for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 29.0** "Instruction Set Summary" for more details.

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-3:	PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7		lator Fail Interrupt Enable				
		the Oscillator Fail interrup the Oscillator Fail interru				
bit 6	C2IE: Compa	rator C2 Interrupt Enable	e bit			
	 1 = Enables the Comparator C2 interrupt 0 = Disables the Comparator C2 interrupt 					
bit 5	C1IE: Compa	rator C1 Interrupt Enable	bit			
	 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt 					
bit 4	EEIE: EEPRO	OM Write Completion Inte	errupt Enable bit			
	 1 = Enables the EEPROM Write Completion interrupt 0 = Disables the EEPROM Write Completion interrupt 					
bit 3	BCL1IE: MSS	SP1 Bus Collision Interrup	pt Enable bit			
	 1 = Enables the MSSP1 Bus Collision Interrupt 0 = Disables the MSSP1 Bus Collision Interrupt 					
bit 2-1	Unimplemented: Read as '0'					
bit 0	CCP2IE: CCF	P2 Interrupt Enable bit				
		the CCP2 interrupt the CCP2 interrupt				

Note 1: PIC16(L)F1827 only.

8.6.4 PIE3 REGISTER

The PIE3 register contains the interrupt enable bits, as shown in Register 8-4.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	—	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—
bit 7							bit 0

Legend:							
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unc	hanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared					
bit 7-6	Unimplemer	nted: Read as '0'					
bit 5	CCP4IE: CC	P4 Interrupt Enable bit					
		the CCP4 interrupt					
	0 = Disables the CCP4 interrupt						
bit 4	CCP3IE: CCP3 Interrupt Enable bit						
		the CCP3 interrupt					
	0 = Disables	the CCP3 interrupt					
bit 3	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit						
		the TMR6 to PR6 Match					
	0 = Disables	the TMR6 to PR6 Match	interrupt				
bit 2	Unimplemer	Unimplemented: Read as '0'					
bit 1	TMR4IE: TM	R4 to PR4 Match Interrup	t Enable bit				
	 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 						

bit 0 Unimplemented: Read as '0'

Note 1: This register is only available on PIC16(L)F1827.

8.6.7 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 8-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

B # 4 / 6 / 6	B 4 4 4 6 4 5	B 8 4 / 6 / 5	B 4 4 4 6 15	B 4 4 4 4			B 444 6 / 5		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0		
OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	<u> </u>	CCP2IF ⁽¹⁾		
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	OSFIF: Oscil	llator Fail Interru	upt Flag bit						
	1 = Interrupt	1 0							
	0 = Interrupt	is not pending							
bit 6	C2IF: Compa	arator C2 Interru	upt Flag bit						
		1 = Interrupt is pending							
	-	is not pending							
bit 5		arator C1 Interru	upt Flag bit						
	1 = Interrupt	is penaing is not pending							
bit 4		OM Write Com	letion Interru	nt Flag bit					
511 4	1 = Interrupt			pt i lag bit					
		is not pending							
bit 3	BCL1IF: MS	SP1 Bus Collisi	on Interrupt F	lag bit					
	1 = Interrupt is pending								
	0 = Interrupt	is not pending							
bit 2-1	Unimplemer	nted: Read as '	0'						
bit 0	CCP2IF: CC	P2 Interrupt Fla	g bit ⁽¹⁾						
	1 = Interrupt								
	0 = Interrupt	is not pending							

Note 1: PIC16(L)F1827 only.

8.6.9 PIR4 REGISTER⁽¹⁾

The PIR4 register contains the interrupt flag bits, as shown in Register 8-9.

- **Note 1:** The PIR4 register is available only on the PIC16(L)F1827 device.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	—	—	BCL2IF	SSP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Bit is set by hardware

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
	1 = A Bus Collision was detected (must be cleared in software)0 = No Bus collision was detected
bit 0	 SSP2IF: Master Synchronous Serial Port 2 (MSSP2) Interrupt Flag bit 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting to Transmit/Receive/Bus Condition in progress

Note 1: This register is only available on PIC16(L)F1827.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIE3 ⁽¹⁾	_	-	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	89
PIE4 ⁽¹⁾	_	-	_	_	-	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	_	CCP2IF ⁽¹⁾	92
PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	94

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

Note 1: PIC16(L)F1827 only.

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash Program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Word 2.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be read
	and saved in RAM prior to the erase.

The number of data write latches may not be equivalent to the number of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 11-1 for details.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/ Boundary	Number of Write Latches/ Boundary	
PIC16(L)F1826/27	32 words,	32 words,	
	EEADRL<4:0>	EEADRL<4:0>	
	= 00000	= 00000	

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

12.2.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-2.

Pin Name	Function Priority ⁽¹⁾
RA0	SDO2 (PIC16(L)F1827 only) RA0
RA1	SS2 (PIC16(L)F1827 only) RA1
RA2	DACOUT (DAC) RA2
RA3	SRQ (SR latch) CCP3 (PIC16(L)F1827 only) C1OUT (Comparator) RA3
RA4	SRNQ (SR latch) CCP4 (PIC16(L)F1827 only) T0CKI C2OUT (Comparator) RA4
RA5	Input only pin
RA6	OSC2 (enabled by Configura- tion Word) CLKOUT CLKR SDO1 P1D P2B (PIC16(L)F1827 only) RA6
RA7	OSC1/CLKIN (enabled by Configuration Word) P1C CCP2 (PIC16(L)F1827 only) P2A (PIC16(L)F1827 only) RA7

TABLE 12-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

13.6 Interrupt-On-Change Registers

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

'1' = Bit is set		'0' = Bit is clea	ared				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
Legend:							
bit 7	•	•		•			bit 0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0

bit 7-0

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin.
 Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

22.4 Timer2 Control Register

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
		TxOUTF	PS<3:0>		TMRxON	TxCKP	S<1:0>	
pit 7	·						bit	
Legend:	la hit				nonted bit rece			
R = Readab		W = Writable			nented bit, read		- 44 D 4-	
u = Bit is unchanged		x = Bit is unkn		-n/n = value a	at POR and BO	R/value at all o	other Resets	
1' = Bit is s	et	'0' = Bit is clea	ared					
oit 7	Unimplem	ented: Read as '	כי					
oit 6-3	TxOUTPS	<3:0>: Timerx Ou	tput Postscale	er Select bits				
	0000 = 1:1	Postscaler						
00 00 01		2 Postscaler						
		0010 = 1:3 Postscaler						
		0011 = 1:4 Postscaler						
		0100 = 1:5 Postscaler 0101 = 1:6 Postscaler						
		: 1.7 Postscaler						
		Postscaler						
	1000 = 1 :9	Postscaler						
		0 Postscaler						
		1 Postscaler						
		2 Postscaler 3 Postscaler						
		4 Postscaler						
		5 Postscaler						
	1111 = 1:1	6 Postscaler						
oit 2	TMRxON:	Timerx On bit						
	1 = Timer	1 = Timerx is on						
	0 = Timer	k is off						
oit 1-0	TxCKPS<	1:0>: Timer2-type	Clock Presca	le Select bits				
	00 = Presc							
	01 = Presc							
	10 = Presc							
	11 = Presc	aler is 64						

24.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two Enhanced Capture/Compare/PWM modules (ECCP1 and ECCP2) and two standard Capture/Compare/PWM modules (CCP3 and CCP4).

The Capture and Compare functions are identical for all four CCP modules (ECCP1, ECCP2, CCP3 and CCP4). The only differences between CCP modules are in the Pulse-Width Modulation (PWM) function. The standard PWM function is identical in modules, CCP3 and CCP4. In CCP modules ECCP1 and ECCP2, the Enhanced PWM function has slight variations from one another. Full-Bridge ECCP modules have four available I/O pins while Half-Bridge ECCP modules only have two available I/O pins. See Table 24-1 for more information.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to ECCP1, ECCP2, CCP3 and CCP4. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

TABLE 24-1:PWM RESOURCES

Device Name	ECCP1	ECCP2	CCP3	CCP4
PIC16(L)F1826	Enhanced PWM Full-Bridge	Not Available	Not Available	Not Available
PIC16(L)F1827	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM

24.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

24.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

24.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPxAS	CCPxASE	CCPxAS2	CCPxAS1	CCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0	228
CCPTMRS	C4TSEL1	C4TSEL0	C3TSEL1	C3TSEL0	C2TSEL1	C2TSEL0	C1TSEL1	C1TSEL0	227
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PR2	Timer2 Period Register								189*
PR4	Timer4 Module Period Register								189*
PR6	Timer6 Module Period Register								189*
PSTRxCON	_	—	_	STRxSYNC	STRxD	STRxC	STRxB	STRxA	230
PWMxCON	PxRSEN	PxDC6	PxDC5	PxDC4	PxDC3	PxDC2	PxDC1	PxDC0	229
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	191
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Register for the 8-bit TMR2 Time Base								189*
TMR4	Holding Register for the 8-bit TMR4 Time Base ⁽¹⁾							189*	
TMR6	Holding Register for the 8-bit TMR6 Time Base ⁽¹⁾								189*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM.

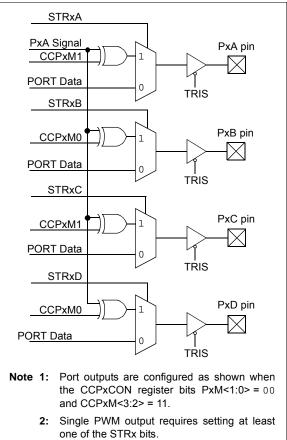
* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.


Once the Single Output mode is selected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STRx<D:A> bits of the PSTRxCON register, as shown in Register 24-5.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the Px<D:A> pins.

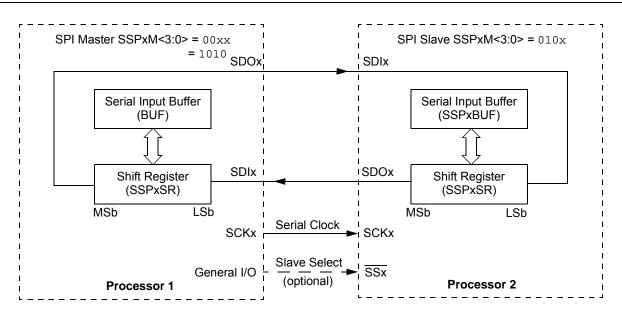
The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 24.4.3 "Enhanced PWM Auto-shutdown mode"**. An auto-shutdown event will only affect pins that have PWM outputs enabled.

FIGURE 24-18: SIMPLIFIED STEERING BLOCK DIAGRAM

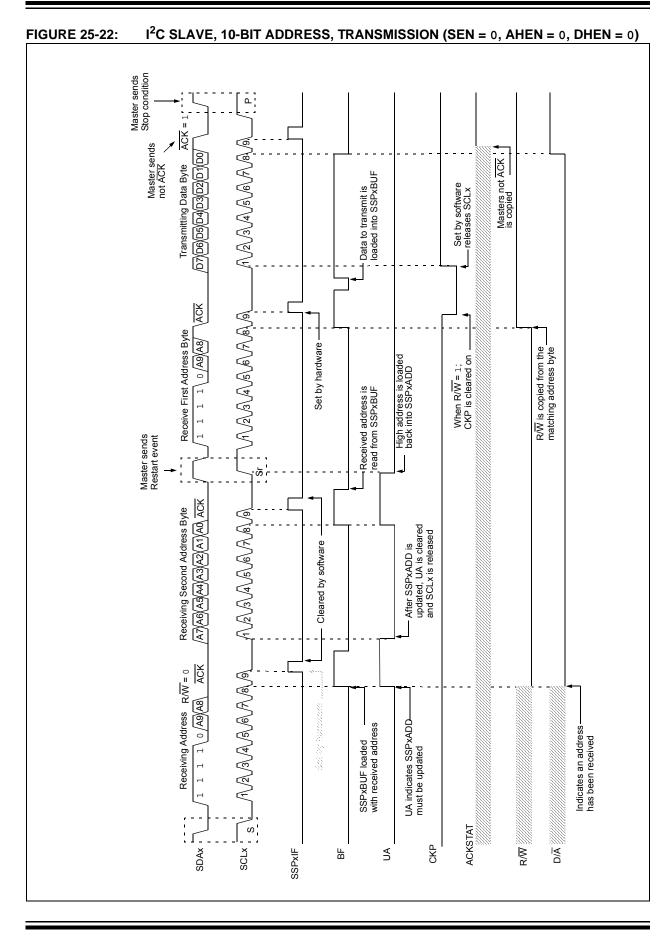
25.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCKx is the clock output)
- · Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)


To enable the serial port, SSPx Enable bit, SSPxEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPxEN bit, re-initialize the SSPxCONx registers and then set the SSPxEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDIx must have corresponding TRIS bit set
- · SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding
 TRIS bit set
- SSx must have corresponding TRIS bit set


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSPx consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the **SSPxBUF** reaister durina transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSPx interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

FIGURE 25-5: SPI MASTER/SLAVE CONNECTION

25.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 25-27).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

25.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

25.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

25.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge (ACK = 0) and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

25.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- Address is shifted out the SDAx pin until all 8 bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

REGISTER 25-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPxOV	SSPxEN	CKP		SSPx	M<3:0>	
bit 7							bit
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement			
u = Bit is unchang	ged	x = Bit is unknow				at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7	0 = No collision <u>Slave mode:</u>	he SSPxBUF registາ າ UF register is written		I while the I ² C condi smitting the previous			to be started
bit 6	SSPxOV: Receiv In SPI mode: 1 = A new byte Overflow ca setting over SSPxBUF r 0 = No overflow In I ² C mode: 1 = A byte is re	re Overflow Indicato is received while the an only occur in Slav flow. In Master mode egister (must be clea v ceived while the SS eared in software).	SSPxBUF registe e mode. In Slave e, the overflow bit i ared in software).	er is still holding the pr mode, the user must is not set since each r is still holding the pr	read the SSPxBUF, new reception (and to	, even if only transmit ransmission) is initiat	ting data, to avoid ed by writing to the
bit 5	In both modes, w In <u>SPI mode:</u> 1 = Enables set 0 = Disables set <u>In I²C mode:</u> 1 = Enables the	rial port and configur erial port and config	pins must be provided a solution of the provided	and SCLx pins as the	source of the serial		
bit 4	0 = Idle state for In I ² C Slave mod SCLx release co 1 = Enable clock	clock is a high level clock is a low level <u>le:</u> ntrol ow (clock stretch). (<u>ide:</u>		data setup time.)			
bit 3-0	$\begin{array}{c} 0000 = {\rm SPI} {\rm \ Mas}\\ 0001 = {\rm SPI} {\rm \ Mas}\\ 0010 = {\rm SPI} {\rm \ Mas}\\ 0010 = {\rm SPI} {\rm \ Sav}\\ 0101 = {\rm SPI} {\rm \ Slav}\\ 0100 = {\rm SPI} {\rm \ Slav}\\ 0110 = {\rm I}^2{\rm C} {\rm \ Slav}\\ 0101 = {\rm Reserve}\\ 1001 = {\rm Reserve}\\ 1001 = {\rm Reserve}\\ 1011 = {\rm I}^2{\rm C} {\rm \ firms}\\ 1001 = {\rm Reserve}\\ 1101 = {\rm Reserv$	e mode, 7-bit addres e mode, 10-bit addre er mode, clock = Fo d ter mode, clock = Fo vare controlled Mast d d e mode, 7-bit addres	DSC/4 DSC/16 DSC/64 WR2 output/2 Kx pin, <u>SSx</u> pin of Kx pin, <u>SSx</u> pin of SS DSC/(4 * (SSPxAI DSC/(4 * (SSPxAI er mode (Slave i SS with Start and	control enabled control disabled, SS DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾	nabled	O pin	
2: Wh 3: Wh 4: SS	Master mode, the ov en enabled, these p en enabled, the SD/ PxADD values of 0,	erflow bit is not set ins must be properl Ax and SCLx pins m	since each new r y configured as i nust be configure orted for I ² C Moc	reception (and trans nput or output. d as inputs. le.		by writing to the SS	PxBUF register.

5: SSPxADD value of '0' is not supported. Use SSPxM = 0000 instead.

NOTES:

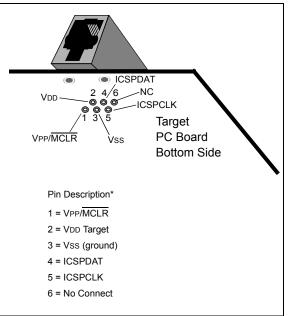
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1826/27 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

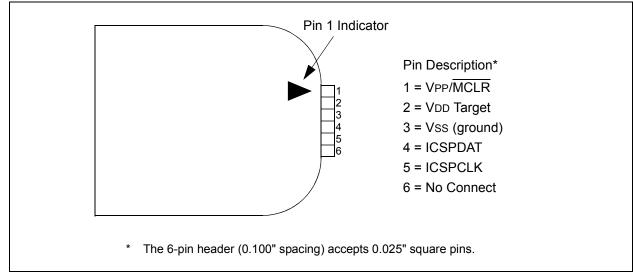

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

TABLE 30-2: **OSCILLATOR PARAMETERS**

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽²⁾	±2%		16.0	—	MHz	$0^{\circ}C \leq TA \leq \text{+}60^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±3%		16.0	_	MHz	$60^{\circ}C \leq TA \leq \textbf{+85^{\circ}C}, V\text{DD} \geq 2.5V$	
			±5%		16.0	_	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	
OS08A	MFosc	Internal Calibrated MFINTOSC Frequency ⁽²⁾	±2%		500	_	kHz	$0^{\circ}C \leq TA \leq +60^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±3%		500	_	kHz	$60^{\circ}C \leq TA \leq \textbf{+85^{\circ}C}, V\text{DD} \geq 2.5V$	
			±5%		500	_	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	$-40^\circ C \le T_A \le +125^\circ C$	
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time MFINTOSC		_	3.2	8	μS		
		Wake-up from Sleep Start-up Time	—	—	24	35	μS		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

3: By design.

TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16		32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	_		2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART)	
Errata	
EUSART	. 285
Associated Registers	
Baud Rate Generator	
Asynchronous Mode	
12-bit Break Transmit and Receive	. 305
Associated Registers	~~~
Receive	
Transmit	
Auto-Wake-up on Break	
Baud Rate Generator (BRG)	
Clock Accuracy	
Receiver	
Setting up 9-bit Mode with Address Detect	
Transmitter	. 287
Baud Rate Generator (BRG)	000
Auto Baud Rate Detect	
Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes	
Formulas	
High Baud Rate Select (BRGH Bit)	
Synchronous Master Mode	, 311
Associated Registers	
Receive	
Transmit	
Reception	
Transmission	. 306
Synchronous Slave Mode	
Associated Registers	
Receive	
Transmit	
Reception	
Transmission	. 311
Extended Instruction Set	
ADDFSR	. 329
F	
•	~~~
Fail-Safe Clock Monitor	63
Fail-Safe Condition Clearing	
Fail-Safe Detection	
Fail-Safe Operation	
Reset or Wake-up from Sleep	
Firmware Instructions	. 325
Fixed Voltage Reference (FVR)	400
Associated Registers	
Flash Program Memory	
Erasing	
Modifying	
Writing	
FSR Register	27
FVRCON (Fixed Voltage Reference Control) Register	. 136

| |²(

C Mode (MSSPx)	
Acknowledge Sequence Timing	
Bus Collision	
During a Repeated Start Condition	
During a Stop Condition	
Effects of a Reset	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Start Condition Timing	264, 265

Transmission	266
Multi-Master Communication, Bus Collision and	200
	074
Arbitration	
Multi-Master Mode	
Read/Write Bit Information (R/W Bit)	247
Slave Mode	
Transmission	252
Sleep Operation	
Stop Condition Timing	
INDF Register	
Indirect Addressing	
Instruction Format	
Instruction Set	
ADDLW	329
ADDWF	329
ADDWFC	329
ANDLW	329
ANDWF	
BRA	
CALL	
CALLW	
LSLF	333
LSRF	333
MOVF	333
MOVIW	334
MOVLB	
MOVU	
OPTION	
RESET	
SUBWFB	
TRIS	338
BCF	330
BSF	330
BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	
CLRWDT	331
COMF	331
DECF	331
DECFSZ	332
GOTO	
INCF	
IORLW	
IORWF	
MOVLW	334
MOVWF	334
NOP	335
RETFIE	336
RETLW	
RETURN	
RLF	
RRF	
SLEEP	337
SUBLW	337
SUBWF	337
SWAPF	
XORLW	
XORWF	
INTCON Register	00
Internal Oscillator Block	
INTOSC	
Specifications	355