

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 **FOSC<2:0>:** Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins

PIC16(L)F1826/27

REGISTER 4-2: CONFIGURATION WORD 2

		R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1/1		
		LVP ⁽¹⁾	DEBUG ⁽²⁾	_	BORV	STVREN	PLLEN		
		bit 13	I			1	bit 8		
U-1	U-1	U-1	R/P-1/1	U-1	U-1	R/P-1	R/P-1		
		_	Reserved	—	—	WRT<	<1:0>		
bit 7							bit 0		
Legend:									
R = Reada	able bit	P = Programn	nable bit	U = Unimplem	nented bit, read	d as '1'			
'0' = Bit is	cleared	'1' = Bit is set		-n = Value wh	en blank or aft	er Bulk Erase			
bit 13 bit 12	bit 13 LVP: Low-Voltage Programming Enable bit 1 = Low-voltage programming enabled 0 = High-voltage on MCLR must be used for programming bit 12 DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins								
bit 11	0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger								
bit 10	Chimplemented: Read as 1 BORV: Brown out Reset Voltage Selection bit								
	1 = Brown-ou	it Reset voltage	set to 1.9V (ty	/pical)					
	0 = Brown-ou	it Reset voltage	set to 2.5V (ty	/pical)					
bit 9	STVREN: Sta 1 = Stack Ove 0 = Stack Ove	ack Overflow/U erflow or Under erflow or Under	nderflow Reset flow will cause flow will not ca	t Enable bit a Reset use a Reset					
bit 8	PLLEN: PLL 1 = 4xPLL en 0 = 4xPLL dis	Enable bit abled sabled							
bit 7-5	Unimplemen	ted: Read as '	l'						
bit 4	Reserved: T	his location sho	uld be progran	nmed to a '1'.					
bit 3-2	Unimplemen	ted: Read as '	1'						
bit 1-0	 t 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits <u>2 kW Flash memory (PIC16(L)F1826 only)</u>: 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 7FFh may be modified by EECON control 01 = 000h to 3FFh write-protected, 400h to 7FFh may be modified by EECON control 00 = 000h to 7FFh write-protected, no addresses may be modified by EECON control <u>4 kW Flash memory (PIC16(L)F1827 only)</u>: 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to FFFh may be modified by EECON control 01 = 000h to 7FFh write-protected, 800h to FFFh may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h to FFFh write-protected, no addresses may be modified by EECON control 00 = 000h								
Note 1: 2:	The LVP bit cann The DEBUG bit in including debugge maintained as a '2	ot be programr Configuration Vers and program	ned to '0' wher Vord is manage imers. For norn	n Programming ed automatically nal device opera	mode is entern by device deve ation, this bit sh	ed via LVP. elopment tools iould be			

8.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 9.0 "Power-Down Mode (Sleep)"** for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

REGISTER 11-6: EECON2	: EEPROM CO	ONTROL 2 REGISTER	2
-----------------------	-------------	-------------------	---

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ontrol Register 2	2		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
S = Bit can only	y be set	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	115
EECON2	EEPROM Control Register 2 (not a physical register)						101*		
EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	113
EEADRH	—	EEADRH6	EEADRH5	EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	114
EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDALT1	EEDATL0	113
EEDATH	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	113
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	93
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF	97

Legend: — = unimplemented read as '0'. Shaded cells are not used by data EEPROM module.

* Page provides register information.

18.0 SR LATCH

The module consists of a single SR Latch with multiple Set and Reset inputs as well as separate latch outputs. The SR Latch module includes the following features:

- · Programmable input selection
- SR Latch output is available externally
- Separate Q and \overline{Q} outputs
- · Firmware Set and Reset

The SR Latch can be used in a variety of analog applications, including oscillator circuits, one-shot circuit, hysteretic controllers, and analog timing applications.

18.1 Latch Operation

The latch is a Set-Reset Latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by:

- Software control (SRPS and SRPR bits)
- Comparator C1 output (SYNCC1OUT)
- Comparator C2 output (SYNCC2OUT)
- SRI pin
- Programmable clock (SRCLK)

The SRPS and the SRPR bits of the SRCON0 register may be used to set or reset the SR Latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR Latch. The output of either comparator can be synchronized to the Timer1 clock source. See **Section 19.0 "Comparator Module"** and **Section 21.0 "Timer1 Module with Gate Control"** for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR Latch.

An internal clock source is available that can periodically set or reset the SR Latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to set or reset the SR Latch, respectively.

Note: Enabling both the Set and Reset inputs from any one source at the same time may result in indeterminate operation, as the Reset dominance cannot be assured.

18.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and \overline{Q} latch outputs. Both of the SR Latch outputs may be directly output to an I/O pin at the same time.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

18.3 Effects of a Reset

Upon any device Reset, the SR Latch output is not initialized to a known state. The user's firmware is responsible for initializing the latch output before enabling the output pins.

24.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

24.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPRxL	Capture/Cor	mpare/PWM	Register x Lo	ow Byte (LSE	3)				204*
CCPRxH	Capture/Cor	mpare/PWM	Register x H	igh Byte (MS	B)				204*
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	170
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCH1	C1NCH0	171
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	170
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	—	_	C2NCH1	C2NCH0	171
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	—	CCP2IE ⁽²⁾	88
PIE3 ⁽²⁾	—	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	_	—	CCP2IF ⁽²⁾	92
PIR3 ⁽²⁾	—	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	93
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS1	T1GSS0	186
TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit TMR1 F	Register			177*
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						177*		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by Compare mode.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
C4TSE	EL<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	:L<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	C4TSEL<1:0>: CCP4 Timer Selection 00 =CCP4 is based off Timer 2 in PWM Mode 01 =CCP4 is based off Timer 4 in PWM Mode 10 =CCP4 is based off Timer 6 in PWM Mode 11 =Reserved							
bit 5-4	C3TSEL<1:0 00 =CCP3 is 01 =CCP3 is 10 =CCP3 is 11 =Reserved	CCP3 Timer based off Time based off Time based off Time d	Selection er 2 in PWM M er 4 in PWM M er 6 in PWM M	ode ode ode				
bit 3-2	C2TSEL<1:0>: CCP2 Timer Selection 00 =CCP2 is based off Timer 2 in PWM Mode 01 =CCP2 is based off Timer 4 in PWM Mode 10 =CCP2 is based off Timer 6 in PWM Mode 11 =Reserved							
bit 1-0	C1TSEL<1:0>: CCP1 Timer Selection 00 =CCP1 is based off Timer 2 in PWM Mode 01 =CCP1 is based off Timer 4 in PWM Mode 10 =CCP1 is based off Timer 6 in PWM Mode 11 =Reserved							

REGISTER 24-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER

25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 25-1: MSSPX BLOCK DIAGRAM (SPI MODE)

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- Address Hold and Data Hold modes
- Selectable SDAx hold times

Figure 25-2 is a block diagram of the I^2C interface module in Master mode. Figure 25-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1827 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 25-2: MSSPX BLOCK DIAGRAM (I²C[™] MASTER MODE)

PIC16(L)F1826/27

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL	_	- SCKP BRG16 - WUE ABDEN								
bit 7			b								
Legend:											
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit								
	Asynchronous	<u>s mode</u> :	u a d								
	\perp = Auto-bauc	d timer overnov	vea overflow								
	Synchronous	mode:									
	Don't care										
bit 6	RCIDL: Recei	ive Idle Flag bi	t								
	Asynchronous	<u>s mode</u> :									
	1 = Receiver	IS IOIE as been receiv	ed and the re	coiver is receiv	vina						
	Synchronous	mode:			ing						
	Don't care										
bit 5	Unimplemen	ted: Read as '	0'								
bit 4	SCKP: Synch	ronous Clock I	Polarity Select	bit							
	Asynchronous	<u>s mode</u> :									
	1 = Transmit i 0 = Transmit r	inverted data to non-inverted da	o the TX/CK p ata to the TX/0	in CK pin							
	Synchronous	mode:									
	1 = Data is clo 0 = Data is clo	ocked on rising ocked on falling	edge of the c gedge of the o	lock clock							
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit								
	1 = 16-bit Bau	ud Rate Gener	ator is used								
bit 2	Unimplement	ted: Read as '	n'								
bit 1	WUF: Wake-	in Enable bit	0								
	Asynchronous	s mode:									
	1 = Receiver	is waiting for a	falling edge.	No character	will be received,	byte RCIF will	l be set. WUE				
	will autom	atically clear a	fter RCIF is se	et.		-					
	0 = Receiver is operating normally										
	Don't care										
bit 0	ABDEN: Auto-Baud Detect Enable bit										
bit 0	Asynchronous mode										
	1 = Auto-Bau	id Detect mode	e is enabled (c	lears when au	to-baud is comr	olete)					
	0 = Auto-Bau	Id Detect mode	is disabled								
	Synchronous	mode:									
	Don't care										

REGISTER 26-3: BAUDCON: BAUD RATE CONTROL REGISTER

				SYNC = 0	, BRGH	= 1, BRG16	i = 1 or Sγ	(NC = 1,	BRG16 = 1	_		
BAUD	Fosc = 32.000 MHz		0 MHz	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	_

Mnen	nonic,	Description	0		14-Bit	Opcode)	Status	Natas
Oper	rands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f. d	Increment f	1	00	1010	dfff	ffff	z	2
IORWE	f. d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVE	fd	Move f	1	00	1000	dfff	ffff	7	2
MOVWE	., ⊆ f	Move W to f	1	00	0000	1fff	ffff	-	2
RIF	fd	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	2
SUBWE	f d	Subtract W from f	1	00	0010	dfff	ffff		2
SUBWEB	fd	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C DC Z	2
SWAPE	f d	Swan nibbles in f	1	00	1110	dfff	ffff	0, 00, 2	2
XORWE	f d	Exclusive OR W with f	1	00	0110	dfff	ffff	7	2
XOIT	i, u				0110	uIII	LLLL	2	2
	fd	Decrement f Skin if 0			1011	4fff	<i>f f f f f f f f f f </i>		1 2
DECESZ	r, u f d	Increment f. Skip if 0	1(2)	00	1111	JEEE			1, 2
INCFSZ	1, u		1(2)	00		aiii	IIII		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
	1	BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	NS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
L									

TABLE 29-3: PIC16(L)F1826/27 ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16(L)F1826/27

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \le k \le 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The five-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>] MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The seven-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assem-

Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction
	OPTION_REG = 0x4F
	W = 0x4F

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	-40°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1826/27	-0.3V to +6.5V
Voltage on VDD with respect to Vss, PIC16LF1826/27	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	-0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	114 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	292 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	
Clamp current, Ік (VPIN < 0 or VPIN > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VD IOL).	□ – Vон) x Iон} + ∑(Vol x
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause p	permanent damage to the

⁺ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Sym.	Characteristic	Min.	Min. Typ† Max. Units Conditions			Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP/RA5 pin	8.0	—	9.0	V	(Note 3, Note 4)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7		VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.		VDD max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	_		1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C
D117	Vdrw	VDD for Read/Write	Vdd min.	—	VDD max.	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D120	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	VDD min.	_	VDD max.	V	
D123	Tiw	Self-timed Write Cycle Time		2	2.5	ms	
D124	TRETD	Characteristic Retention	_	40	—	Year	Provided no other specifications are violated

30.5 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \downarrow or SCKx \uparrow input		Тсү		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	Tcy + 20	_	-	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20		—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100	_	—	ns	
SP74*	TscH2dlL, TscL2dlL	Hold time of SDIx data input to SCKx edge		100	_	—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDOx data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-impedance		10		50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	—	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	_	_	50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	_	_	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу	_	—	ns	
SP82*	TssL2doV	SDOx data output valid after $\overline{SS}\downarrow$ edge		_		50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	_	_	ns	

TABLE 30-14: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*

PIC16(L)F1826/27

FIGURE 31-6: Vol VS. IoL OVER TEMPERATURE (VDD = 1.8V)

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

Original release (06/2009)

Revision B (08/09)

Revised Tables 5-3, 6-2, 12-2, 12-3; Updated Electrical Specifications; Added UQFN Package; Added SOIC and QFN Land Patterns; Updated Product ID section.

Revision C (06/10)

Updated Electrical Specification and included Enhanced Core Golden Chapters.

Revision D (04/11)

Added Char Data to release Final data sheet.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This section provides comparisons when migrating from other similar PIC^\circledast devices to the $\mathsf{PIC16}(\mathsf{L})\mathsf{F1826}/\mathsf{27}$ family of devices.

B.1 PIC16F648A to PIC16(L)F1827

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F648A	PIC16(L)F1827
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	4K	4K
Max. SRAM (Bytes)	256	384
Max. EEPROM (Bytes)	256	256
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>, RA5
Interrupt-on-Change	RB<7:4>	RB<7:0>, Edge Selectable
Comparator	2	2
AUSART/EUSART	1/0	0/2
Extended WDT	N	Y
Software Control Option of WDT/BOR	N	Y
INTOSC	48 kHz or	31 kHz -
Frequencies	4 MHz	32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/2
Enhanced PIC16 CPU	N	Y
MSSPx/SSPx	0	2/0
Reference Clock	Ν	Y
Data Signal Modulator	N	Y
SR Latch	N	Y
Voltage Reference	N	Y
DAC	Y	Y

TRISB	125
TRISB Register	
Two-Speed Clock Start-up Mode	61
TXCON (Timer2/4/6) Register	
TXREG	
TXREG Register	
TXSTA Register	
BRGH Bit	

U

USART

Synchronous Master Mode	
Requirements, Synchronous Receive	. 364
Requirements, Synchronous Transmission	. 364
Timing Diagram, Synchronous Receive	. 364
Timing Diagram, Synchronous Transmission	. 364

۷

VREF. SEE ADC Reference Voltage

W

Wake-up on Break	
Wake-up Using Interrupts	
Watchdog Timer (WDT)	76
Associated Registers	
Configuration Word w/ Watchdog T	ïmer 100
Modes	
Specifications	
WCOL	263, 266, 268, 270
WCOL Status Flag	263, 266, 268, 270
WDTCON Register	
WPUB Register	123, 128
Write Protection	
WWW Address	
WWW, On-Line Support	8