



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 16                                                                         |
| Program Memory Size        | 3.5KB (2K x 14)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 256 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                |
| Data Converters            | A/D 12x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 28-QFN (6x6)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826t-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





## REGISTER 7-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

| R/W-1/u | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R-q/u  |
|---------|-----|-----|-----|-----|-----|-----|--------|
| SBOREN  | —   | _   | _   | —   | —   | —   | BORRDY |
| bit 7   |     | •   |     |     |     |     | bit 0  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared | q = Value depends on condition                        |

| bit 7   | SBOREN: Software Brown-out Reset Enable bit                |
|---------|------------------------------------------------------------|
|         | <u>If BOREN &lt;1:0&gt; in Configuration Word 1 ≠ 01</u> : |
|         | SBOREN is read/write, but has no effect on the BOR.        |
|         | If BOREN <1:0> in Configuration Word 1 = 01:               |
|         | 1 = BOR Enabled                                            |
|         | 0 = BOR Disabled                                           |
| bit 6-1 | Unimplemented: Read as '0'                                 |
| bit 0   | BORRDY: Brown-out Reset Circuit Ready Status bit           |
|         | 1 = The Brown-out Reset circuit is active                  |
|         | 0 = The Brown-out Reset circuit is inactive                |
|         |                                                            |

### 10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 30.0 "Electrical Specifications"** for the LFINTOSC tolerances.

### **10.2 WDT Operating Modes**

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 10-1.

#### 10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

#### 10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

#### 10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

| TABLE 10-1: | WDT OPERATING MODES |
|-------------|---------------------|
|-------------|---------------------|

| WDTE<1:0> | SWDTEN | Device<br>Mode | WDT<br>Mode |
|-----------|--------|----------------|-------------|
| 11        | х      | Х              | Active      |
| 10        |        | Awake          | Active      |
| 10        | X      | Sleep          | Disabled    |
| 0.1       | 1      | ~              | Active      |
| UI        | 0      | ~              | Disabled    |
| 00        | х      | х              | Disabled    |

## TABLE 10-2: WDT CLEARING CONDITIONS

#### 10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

## 10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

## 10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Register 3-1** for more information.

| Conditions                                               | WDT                          |  |
|----------------------------------------------------------|------------------------------|--|
| WDTE<1:0> = 00                                           |                              |  |
| WDTE<1:0> = 01 and SWDTEN = 0                            |                              |  |
| WDTE<1:0> = 10 and enter Sleep                           | Cleared                      |  |
| CLRWDT Command                                           |                              |  |
| Oscillator Fail Detected                                 |                              |  |
| Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK |                              |  |
| Exit Sleep + System Clock = XT, HS, LP                   | Cleared until the end of OST |  |
| Change INTOSC divider (IRCF bits)                        | Unaffected                   |  |



## FIGURE 11-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

#### **REGISTER 12-8: PORTB: PORTB REGISTER**

| R/W-x/x                                 | R/W-x/x | R/W-x/x           | R/W-x/x                                               | R/W-x/x      | R/W-x/x          | R/W-x/x | R/W-x/x |
|-----------------------------------------|---------|-------------------|-------------------------------------------------------|--------------|------------------|---------|---------|
| RB7                                     | RB6     | RB5               | RB4                                                   | RB3          | RB2              | RB1     | RB0     |
| bit 7                                   |         |                   |                                                       |              |                  |         | bit 0   |
|                                         |         |                   |                                                       |              |                  |         |         |
| Legend:                                 |         |                   |                                                       |              |                  |         |         |
| R = Readable I                          | bit     | W = Writable      | bit                                                   | U = Unimpler | nented bit, read | as '0'  |         |
| u = bit is unchanged x = Bit is unknown |         | nown              | -n/n = Value at POR and BOR/Value at all other Resets |              |                  |         |         |
| '1' = Bit is set                        |         | '0' = Bit is clea | ared                                                  |              |                  |         |         |
|                                         |         |                   |                                                       |              |                  |         |         |

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

#### **REGISTER 12-9: TRISB: PORTB TRI-STATE REGISTER**

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7  | TRISB6  | TRISB5  | TRISB4  | TRISB3  | TRISB2  | TRISB1  | TRISB0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

#### REGISTER 12-10: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7   | LATB6   | LATB5   | LATB4   | LATB3   | LATB2   | LATB1   | LATB0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits<sup>(1)</sup>

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

## 13.0 INTERRUPT-ON-CHANGE

The PORTB pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTB pin can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- Rising and falling edge detection
- Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

## 13.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

## 13.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCBPx bit of the IOCBP register is set. To enable a pin to detect a falling edge, the associated IOCBNx bit of the IOCBN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCBPx bit and the IOCBNx bit of the IOCBP and IOCBN registers, respectively.

## 13.3 Interrupt Flags

The IOCBFx bits located in the IOCBF register are status flags that correspond to the Interrupt-on-change pins of the port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCBFx bits.

## 13.4 Clearing Interrupt Flags

The individual status flags, (IOCBFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

### EXAMPLE 13-1:

```
MOVLW 0xff
XORWF IOCBF, W
ANDWF IOCBF, F
```

## 13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCBF register will be updated prior to the first instruction executed out of Sleep.

FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM



## 16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

## FIGURE 16-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.



## 17.7 DAC Control Registers

## REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

| R/W-0/0           | R/W-0/0                    | R/W-0/0             | U-0            | R/W-0/0         | R/W-0/0            | U-0               | R/W-0/0 |
|-------------------|----------------------------|---------------------|----------------|-----------------|--------------------|-------------------|---------|
| DACEN             | DACLPS                     | DACOE               |                | DACP            | SS<1:0>            |                   | DACNSS  |
| bit 7             |                            |                     |                |                 |                    |                   | bit 0   |
|                   |                            |                     |                |                 |                    |                   |         |
| Legend:           |                            |                     |                |                 |                    |                   |         |
| R = Readable b    | it                         | W = Writable bi     | t              | U = Unimpleme   | ented bit, read as | 0'                |         |
| u = Bit is unchar | nged                       | x = Bit is unkno    | wn             | -n/n = Value at | POR and BOR/Va     | alue at all other | Resets  |
| '1' = Bit is set  |                            | '0' = Bit is clear  | ed             |                 |                    |                   |         |
|                   |                            |                     |                |                 |                    |                   |         |
| bit 7             | DACEN: DAC                 | Enable bit          |                |                 |                    |                   |         |
|                   | 1 = DAC is en              | abled               |                |                 |                    |                   |         |
|                   | 0 = DAC is dis             | sabled              |                |                 |                    |                   |         |
| bit 6             | DACLPS: DAC                | Low-Power Volt      | age State Sele | ct bit          |                    |                   |         |
|                   | 1 = DAC Posi               | tive reference so   | urce selected  |                 |                    |                   |         |
| 5 H F             | 0 = DAC Nega               |                     |                |                 |                    |                   |         |
| DIT 5             | 1 = DAC volta              | voltage Output E    | nable bit      |                 |                    |                   |         |
|                   | 0 = DAC volta              | ige level is discor | nected from th | e DACOUT pin    |                    |                   |         |
| bit 4             | Unimplemente               | ed: Read as '0'     |                |                 |                    |                   |         |
| bit 3-2           | DACPSS<1:0>                | . DAC Positive S    | ource Select b | its             |                    |                   |         |
|                   | 00 = VDD                   |                     |                |                 |                    |                   |         |
|                   | 01 = VREF+ p               | in                  |                |                 |                    |                   |         |
|                   | 10 = FVR But               | ffer2 output        |                |                 |                    |                   |         |
| 5 14 <i>d</i>     |                            | a, do not use       |                |                 |                    |                   |         |
| Dit 1             | Unimplemente               | ed: Read as '0'     |                |                 |                    |                   |         |
| bit 0             | DACNSS: DAC                | C Negative Source   | e Select bits  |                 |                    |                   |         |
|                   | $\perp = VREF-$<br>0 = VSS |                     |                |                 |                    |                   |         |
|                   | 0 00                       |                     |                |                 |                    |                   |         |

## REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

| U-0   | U-0 | U-0 | R/W-0/0 | R/W-0/0 | R/W-0/0   | R/W-0/0 | R/W-0/0 |
|-------|-----|-----|---------|---------|-----------|---------|---------|
| —     | —   | —   |         |         | DACR<4:0> |         |         |
| bit 7 |     |     |         |         |           |         | bit 0   |
|       |     |     |         |         |           |         |         |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

#### TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

| Name    | Bit 7 | Bit 6  | Bit 5    | Bit 4    | Bit 3   | Bit 2   | Bit 1  | Bit 0  | Register<br>on page |
|---------|-------|--------|----------|----------|---------|---------|--------|--------|---------------------|
| FVRCON  | FVREN | FVRRDY | Reserved | Reserved | CDAFVR1 | CDAFVR0 | ADFVR1 | ADFVR0 | 138                 |
| DACCON0 | DACEN | DACLPS | DACOE    | _        | DACPSS1 | DACPSS0 | _      | DACNSS | 156                 |
| DACCON1 | _     | _      | _        | DACR4    | DACR3   | DACR2   | DACR1  | DACR0  | 156                 |

**Legend:** — = unimplemented, read as '0'. Shaded cells are unused with the DAC module.

### 24.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

#### 24.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

#### 24.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

### 24.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

| Name     | Bit 7                                                        | Bit 6                                                          | Bit 5    | Bit 4                 | Bit 3                  | Bit 2   | Bit 1   | Bit 0   | Register<br>on Page |
|----------|--------------------------------------------------------------|----------------------------------------------------------------|----------|-----------------------|------------------------|---------|---------|---------|---------------------|
| APFCON0  | RXDTSEL                                                      | SDO1SEL                                                        | SS1SEL   | P2BSEL <sup>(2)</sup> | CCP2SEL <sup>(2)</sup> | P1DSEL  | P1CSEL  | CCP1SEL | 119                 |
| CCPxCON  | PxM1 <sup>(1)</sup>                                          | PxM0 <sup>(1)</sup>                                            | DCxB1    | DCxB0                 | CCPxM3                 | CCPxM2  | CCPxM1  | CCPxM0  | 226                 |
| CCPxAS   | CCPxASE                                                      | CPxASE CCPxAS2 CCPxAS1 CCPxAS0 PSSxAC1 PSSxAC0 PSSxBD1 PSSxBD0 |          |                       |                        |         |         |         | 228                 |
| CCPTMRS  | C4TSEL1                                                      | C4TSEL0                                                        | C3TSEL1  | C3TSEL0               | C2TSEL1                | C2TSEL0 | C1TSEL1 | C1TSEL0 | 227                 |
| INTCON   | GIE                                                          | PEIE                                                           | TMR0IE   | INTE                  | IOCIE                  | TMR0IF  | INTF    | IOCIF   | 86                  |
| PR2      | Timer2 Peric                                                 | d Register                                                     |          |                       |                        |         |         |         | 189*                |
| PR4      | Timer4 Modu                                                  | ïmer4 Module Period Register                                   |          |                       |                        |         |         |         | 189*                |
| PR6      | Timer6 Modu                                                  | ule Period Re                                                  | gister   |                       |                        |         |         |         | 189*                |
| PSTRxCON | —                                                            | _                                                              | _        | STRxSYNC              | STRxD                  | STRxC   | STRxB   | STRxA   | 230                 |
| PWMxCON  | PxRSEN                                                       | PxDC6                                                          | PxDC5    | PxDC4                 | PxDC3                  | PxDC2   | PxDC1   | PxDC0   | 229                 |
| T2CON    | —                                                            | T2OUTPS3                                                       | T2OUTPS2 | T2OUTPS1              | T2OUTPS0               | TMR2ON  | T2CKPS1 | T2CKPS0 | 191                 |
| T4CON    | —                                                            | T4OUTPS3                                                       | T4OUTPS2 | T4OUTPS1              | T4OUTPS0               | TMR4ON  | T4CKPS1 | T4CKPS0 | 191                 |
| T6CON    | —                                                            | T6OUTPS3                                                       | T6OUTPS2 | T6OUTPS1              | T6OUTPS0               | TMR6ON  | T6CKPS1 | T6CKPS0 | 191                 |
| TMR2     | Holding Reg                                                  | Holding Register for the 8-bit TMR2 Time Base                  |          |                       |                        |         |         |         | 189*                |
| TMR4     | Holding Register for the 8-bit TMR4 Time Base <sup>(1)</sup> |                                                                |          |                       |                        |         |         |         | 189*                |
| TMR6     | Holding Register for the 8-bit TMR6 Time Base <sup>(1)</sup> |                                                                |          |                       |                        |         |         |         | 189*                |
| TRISB    | TRISB7                                                       | TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0        |          |                       |                        |         |         |         |                     |

#### TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

**Legend:** — = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM.

\* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

#### 24.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 24-16 for illustration. The lower seven bits of the associated PWMxCON register (Register 24-4) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

#### FIGURE 24-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT



## FIGURE 24-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS







© 2011 Microchip Technology Inc.

#### 25.6.4 I<sup>2</sup>C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

### FIGURE 25-26: FIRST START BIT TIMING

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I<sup>2</sup>C module is reset into its Idle state.
  - **2:** The Philips I<sup>2</sup>C Specification states that a bus collision cannot occur on a Start.



#### 25.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSPx module then goes into Idle mode (Figure 25-29).

## 25.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

## 25.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 25-30).

## 25.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

# FIGURE 25-30: ACKNOWLEDGE SEQUENCE WAVEFORM



## 25.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I<sup>2</sup>C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 25-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 25-39 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 25-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

#### **EQUATION 25-1:**

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

### FIGURE 25-40: BAUD RATE GENERATOR BLOCK DIAGRAM



**Note:** Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I<sup>2</sup>C. This is an implementation limitation.

#### TABLE 25-4: MSSPX CLOCK RATE W/BRG

| Fosc   | Fcy   | BRG Value | FCLOCK<br>(2 Rollovers of BRG) |
|--------|-------|-----------|--------------------------------|
| 32 MHz | 8 MHz | 13h       | 400 kHz <sup>(1)</sup>         |
| 32 MHz | 8 MHz | 19h       | 308 kHz                        |
| 32 MHz | 8 MHz | 4Fh       | 100 kHz                        |
| 16 MHz | 4 MHz | 09h       | 400 kHz <sup>(1)</sup>         |
| 16 MHz | 4 MHz | 0Ch       | 308 kHz                        |
| 16 MHz | 4 MHz | 27h       | 100 kHz                        |
| 4 MHz  | 1 MHz | 09h       | 100 kHz                        |

**Note 1:** The I<sup>2</sup>C interface does not conform to the 400 kHz I<sup>2</sup>C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

|        | SYNC = 0, BRGH = 0, BRG16 = 0 |            |                             |                   |            |                             |                   |            |                             |                |                    |                             |  |
|--------|-------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|-------------------|------------|-----------------------------|----------------|--------------------|-----------------------------|--|
| BAUD   | Foso                          | c = 32.00  | 0 MHz                       | Fosc = 20.000 MHz |            |                             | Fosc = 18.432 MHz |            |                             | Fosc           | Fosc = 11.0592 MHz |                             |  |
| RATE   | Actual<br>Rate                | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error         | SPBRG<br>value<br>(decimal) |  |
| 300    | _                             | _          | _                           | _                 | _          |                             | _                 |            | _                           | _              | _                  | _                           |  |
| 1200   | —                             | —          | —                           | 1221              | 1.73       | 255                         | 1200              | 0.00       | 239                         | 1200           | 0.00               | 143                         |  |
| 2400   | 2404                          | 0.16       | 207                         | 2404              | 0.16       | 129                         | 2400              | 0.00       | 119                         | 2400           | 0.00               | 71                          |  |
| 9600   | 9615                          | 0.16       | 51                          | 9470              | -1.36      | 32                          | 9600              | 0.00       | 29                          | 9600           | 0.00               | 17                          |  |
| 10417  | 10417                         | 0.00       | 47                          | 10417             | 0.00       | 29                          | 10286             | -1.26      | 27                          | 10165          | -2.42              | 16                          |  |
| 19.2k  | 19.23k                        | 0.16       | 25                          | 19.53k            | 1.73       | 15                          | 19.20k            | 0.00       | 14                          | 19.20k         | 0.00               | 8                           |  |
| 57.6k  | 55.55k                        | -3.55      | 3                           | —                 | _          | _                           | 57.60k            | 0.00       | 7                           | 57.60k         | 0.00               | 2                           |  |
| 115.2k | —                             | _          | _                           | —                 | _          | _                           | —                 | _          | _                           | —              | _                  | _                           |  |

#### TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES

|        |                  |            |                             |                  | SYNC       | <b>C</b> = 0, BRGH          | l = 0, BRG        | <b>G16 =</b> 0 |                             |                |                  |                             |  |
|--------|------------------|------------|-----------------------------|------------------|------------|-----------------------------|-------------------|----------------|-----------------------------|----------------|------------------|-----------------------------|--|
| BAUD   | Fosc = 8.000 MHz |            |                             | Fosc = 4.000 MHz |            |                             | Fosc = 3.6864 MHz |                |                             | Fos            | Fosc = 1.000 MHz |                             |  |
| RATE   | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error     | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error       | SPBRG<br>value<br>(decimal) |  |
| 300    | _                | _          | _                           | 300              | 0.16       | 207                         | 300               | 0.00           | 191                         | 300            | 0.16             | 51                          |  |
| 1200   | 1202             | 0.16       | 103                         | 1202             | 0.16       | 51                          | 1200              | 0.00           | 47                          | 1202           | 0.16             | 12                          |  |
| 2400   | 2404             | 0.16       | 51                          | 2404             | 0.16       | 25                          | 2400              | 0.00           | 23                          | —              | _                | —                           |  |
| 9600   | 9615             | 0.16       | 12                          | —                |            | —                           | 9600              | 0.00           | 5                           | —              | _                | —                           |  |
| 10417  | 10417            | 0.00       | 11                          | 10417            | 0.00       | 5                           | _                 | _              | _                           | —              | _                | _                           |  |
| 19.2k  | —                | —          | —                           | —                |            | —                           | 19.20k            | 0.00           | 2                           | —              | _                | —                           |  |
| 57.6k  | —                | —          | —                           | —                | —          | —                           | 57.60k            | 0.00           | 0                           | —              | —                | —                           |  |
| 115.2k | —                | _          | —                           | —                | _          | _                           | _                 | —              | —                           | —              | _                | —                           |  |

|        | <b>SYNC</b> = 0, <b>BRGH</b> = 1, <b>BRG16</b> = 0 |            |                             |                |            |                             |                   |            |                             |                |                    |                             |  |
|--------|----------------------------------------------------|------------|-----------------------------|----------------|------------|-----------------------------|-------------------|------------|-----------------------------|----------------|--------------------|-----------------------------|--|
| BAUD   | Fosc = 32.000 MHz Fos                              |            |                             | Fosc           | = 20.00    | 0 MHz                       | Fosc = 18.432 MHz |            |                             | Fosc           | Fosc = 11.0592 MHz |                             |  |
| RATE   | Actual<br>Rate                                     | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate | %<br>Error         | SPBRG<br>value<br>(decimal) |  |
| 300    | —                                                  | _          | —                           | —              | _          | —                           |                   | _          | _                           |                |                    | _                           |  |
| 1200   | —                                                  | —          | —                           | —              | —          | —                           | —                 | —          | —                           | —              | —                  | —                           |  |
| 2400   | —                                                  | —          | —                           | —              | —          | —                           | —                 | —          | —                           | —              | _                  | _                           |  |
| 9600   | 9615                                               | 0.16       | 207                         | 9615           | 0.16       | 129                         | 9600              | 0.00       | 119                         | 9600           | 0.00               | 71                          |  |
| 10417  | 10417                                              | 0.00       | 191                         | 10417          | 0.00       | 119                         | 10378             | -0.37      | 110                         | 10473          | 0.53               | 65                          |  |
| 19.2k  | 19.23k                                             | 0.16       | 103                         | 19.23k         | 0.16       | 64                          | 19.20k            | 0.00       | 59                          | 19.20k         | 0.00               | 35                          |  |
| 57.6k  | 57.14k                                             | -0.79      | 34                          | 56.82k         | -1.36      | 21                          | 57.60k            | 0.00       | 19                          | 57.60k         | 0.00               | 11                          |  |
| 115.2k | 117.64k                                            | 2.12       | 16                          | 113.64k        | -1.36      | 10                          | 115.2k            | 0.00       | 9                           | 115.2k         | 0.00               | 5                           |  |

## FIGURE 26-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION



## FIGURE 26-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP



97 The \$339-4.87 remains in him while the WOE hit is set.

## 26.5 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

#### 26.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 26.4.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

#### 26.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (see Section 26.4.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

## 26.5.3 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

| DC CHA       | ARACTE | RISTICS                                                             | Standard O<br>Operating te | perating<br>emperatur | <b>Conditio</b><br>e -40°C : | <b>ns (unl</b> e<br>≤ Ta ≤ + | ess otherwise stated)<br>125°C                |
|--------------|--------|---------------------------------------------------------------------|----------------------------|-----------------------|------------------------------|------------------------------|-----------------------------------------------|
| Param<br>No. | Sym.   | Characteristic                                                      | Min.                       | Тур†                  | Max.                         | Units                        | Conditions                                    |
|              |        | Program Memory<br>Programming Specifications                        |                            |                       |                              |                              |                                               |
| D110         | VIHH   | Voltage on MCLR/VPP/RA5 pin                                         | 8.0                        | —                     | 9.0                          | V                            | (Note 3, Note 4)                              |
| D111         | IDDP   | Supply Current during<br>Programming                                | —                          | —                     | 10                           | mA                           |                                               |
| D112         |        | VDD for Bulk Erase                                                  | 2.7                        |                       | VDD<br>max.                  | V                            |                                               |
| D113         | VPEW   | VDD for Write or Row Erase                                          | Vdd<br>min.                |                       | VDD<br>max.                  | V                            |                                               |
| D114         | IPPPGM | Current on MCLR/VPP during Erase/<br>Write                          | _                          |                       | 1.0                          | mA                           |                                               |
| D115         | IDDPGM | Current on VDD during Erase/Write                                   | —                          |                       | 5.0                          | mA                           |                                               |
|              |        | Data EEPROM Memory                                                  |                            |                       |                              |                              |                                               |
| D116         | ED     | Byte Endurance                                                      | 100K                       | —                     | —                            | E/W                          | -40°C to +85°C                                |
| D117         | Vdrw   | VDD for Read/Write                                                  | Vdd<br>min.                | —                     | VDD<br>max.                  | V                            |                                               |
| D118         | TDEW   | Erase/Write Cycle Time                                              | —                          | 4.0                   | 5.0                          | ms                           |                                               |
| D119         | TRETD  | Characteristic Retention                                            | —                          | 40                    | —                            | Year                         | Provided no other specifications are violated |
| D120         | Tref   | Number of Total Erase/Write<br>Cycles before Refresh <sup>(2)</sup> | 1M                         | 10M                   | —                            | E/W                          | -40°C to +85°C                                |
|              |        | Program Flash Memory                                                |                            |                       |                              |                              |                                               |
| D121         | Eр     | Cell Endurance                                                      | 10K                        | —                     | —                            | E/W                          | -40°C to +85°C (Note 1)                       |
| D122         | Vpr    | VDD for Read                                                        | VDD<br>min.                | _                     | VDD<br>max.                  | V                            |                                               |
| D123         | Tiw    | Self-timed Write Cycle Time                                         |                            | 2                     | 2.5                          | ms                           |                                               |
| D124         | TRETD  | Characteristic Retention                                            | _                          | 40                    | —                            | Year                         | Provided no other specifications are violated |

## 30.5 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

**3:** Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

## 30.8 AC Characteristics: PIC16(L)F1826/27-I/E



### FIGURE 30-6: CLOCK TIMING

### TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

| Standard<br>Operating | d Operati<br>g tempera | ng Conditions (unless otherwise ature $-40^{\circ}C \le TA \le +125^{\circ}C$ | e stated) |        |          |       |                                |
|-----------------------|------------------------|-------------------------------------------------------------------------------|-----------|--------|----------|-------|--------------------------------|
| Param<br>No.          | Sym.                   | Characteristic                                                                | Min.      | Тур†   | Max.     | Units | Conditions                     |
| OS01                  | Fosc                   | External CLKIN Frequency <sup>(1)</sup>                                       | DC        | —      | 0.5      | MHz   | EC Oscillator mode (low)       |
|                       |                        |                                                                               | DC        | _      | 4        | MHz   | EC Oscillator mode (medium)    |
|                       |                        |                                                                               | DC        | —      | 20       | MHz   | EC Oscillator mode (high)      |
|                       |                        | Oscillator Frequency <sup>(1)</sup>                                           | —         | 32.768 | —        | kHz   | LP Oscillator mode             |
|                       |                        |                                                                               | 0.1       | —      | 4        | MHz   | XT Oscillator mode             |
|                       |                        |                                                                               | 1         | —      | 4        | MHz   | HS Oscillator mode             |
|                       |                        |                                                                               | 1         | —      | 20       | MHz   | HS Oscillator mode, VDD > 2.7V |
|                       |                        |                                                                               | DC        | —      | 4        | MHz   | RC Oscillator mode, VDD > 2.0V |
| OS02                  | Tosc                   | External CLKIN Period <sup>(1)</sup>                                          | 27        | —      | ×        | μs    | LP Oscillator mode             |
|                       |                        |                                                                               | 250       | —      | ×        | ns    | XT Oscillator mode             |
|                       |                        |                                                                               | 50        | —      | ×        | ns    | HS Oscillator mode             |
|                       |                        |                                                                               | 50        | —      | ×        | ns    | EC Oscillator mode             |
|                       |                        | Oscillator Period <sup>(1)</sup>                                              | —         | 30.5   | —        | μs    | LP Oscillator mode             |
|                       |                        |                                                                               | 250       | —      | 10,000   | ns    | XT Oscillator mode             |
|                       |                        |                                                                               | 50        | —      | 1,000    | ns    | HS Oscillator mode             |
|                       |                        |                                                                               | 250       | —      | —        | ns    | RC Oscillator mode             |
| OS03                  | Тсү                    | Instruction Cycle Time <sup>(1)</sup>                                         | 200 TCY   | —      | DC       | ns    | Tcy = Fosc/4                   |
| OS04*                 | TosH,                  | External CLKIN High,                                                          | 2         | —      | —        | μS    | LP oscillator                  |
|                       | TosL                   | External CLKIN Low                                                            | 100       | —      | —        | ns    | XT oscillator                  |
|                       |                        |                                                                               | 20        | —      | —        | ns    | HS oscillator                  |
| OS05*                 | TosR,                  | External CLKIN Rise,                                                          | 0         | —      | $\infty$ | ns    | LP oscillator                  |
|                       | TosF                   | External CLKIN Fall                                                           | 0         | —      | $\infty$ | ns    | XT oscillator                  |
|                       |                        |                                                                               | 0         | —      | $\infty$ | ns    | HS oscillator                  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

| SSP2CON3 Register        |     |
|--------------------------|-----|
| SSP2MSK Register         |     |
| SSP2STAT Register        |     |
| SSPxADD Register         |     |
| SSPxCON1 Register        |     |
| SSPxCON2 Register        |     |
| SSPxCON3 Register        |     |
| SSPxMSK Register         |     |
| SSPxOV                   |     |
| SSPxOV Status Flag       |     |
| SSPxSTAT Register        |     |
| R/W Bit                  | 247 |
| Stack                    |     |
| Accessing                |     |
| Reset                    |     |
| Stack Overflow/Underflow | 76  |
| STATUS Register          |     |
| SUBWFB                   |     |
|                          |     |

## т

| T1CON Register                              | . 28,  | 185  |
|---------------------------------------------|--------|------|
| T1GCON Register                             |        | 186  |
| T2CON Register                              | 28     | , 32 |
| Temperature Indicator Module                |        | 137  |
| Thermal Considerations                      |        | 352  |
| Timer0                                      | 173,   | 192  |
| Associated Registers                        |        | 176  |
| Operation                                   |        | 173  |
| Specifications                              |        | 360  |
| Timer1                                      |        | 177  |
| Associated registers                        |        | 187  |
| Asynchronous Counter Mode                   |        | 179  |
| Reading and Writing                         |        | 179  |
| Clock Source Selection                      |        | 178  |
| Interrupt                                   |        | 181  |
| Operation                                   |        | 178  |
| Operation During Sleep                      |        | 181  |
| Oscillator                                  |        | 179  |
| Prescaler                                   |        | 179  |
| Specifications                              |        | 360  |
| Timer1 Gate                                 |        |      |
| Selecting Source                            |        | 179  |
| TMR1H Register                              |        | 177  |
| TMR1L Register                              |        | 177  |
| Timer2                                      |        |      |
| Associated registers                        |        | 192  |
| Timer2/4/6                                  |        | 189  |
| Associated registers                        |        | 192  |
| Timers                                      |        |      |
| Timer1                                      |        |      |
| T1CON                                       |        | 185  |
| T1GCON                                      |        | 186  |
| Timer2/4/6                                  |        |      |
| TXCON                                       |        | 191  |
| Timing Diagrams                             |        |      |
| A/D Conversion                              |        | 362  |
| A/D Conversion (Sleep Mode)                 |        | 362  |
| Acknowledge Sequence                        |        | 270  |
| Asynchronous Reception                      |        | 292  |
| Asynchronous Transmission                   |        | 288  |
| Asynchronous Transmission (Back to Back)    |        | 288  |
| Auto Wake-up Bit (WUE) During Normal Operat | tion . | 304  |
| Auto Wake-up Bit (WUE) During Sleep         |        | 304  |
| Automatic Baud Rate Calibration             |        | 302  |
| Baud Rate Generator with Clock Arbitration  |        | 263  |
|                                             |        |      |

| BRG Reset Due to SDA Arbitration During Start            |              |
|----------------------------------------------------------|--------------|
| Condition                                                | 274          |
| Brown-out Reset (BOR)                                    | 358          |
| Brown-out Reset Situations                               | 75           |
| Bus Collision During a Repeated Start Condition          | ~ <b>-</b> - |
| (Case 1)                                                 | 275          |
| Bus Collision During a Repeated Start Condition          | 275          |
| (Case 2)                                                 | 273          |
| Bus Collision During a Start Condition (SCE - 0)         | 276          |
| Bus Collision During a Stop Condition (Case 2)           | 276          |
| Bus Collision During Start Condition (SDA only)          | 273          |
| Bus Collision for Transmit and Acknowledge               | 272          |
| CLKOUT and I/O                                           | 356          |
| Clock Synchronization                                    | 260          |
| Clock Timing                                             | 354          |
| Comparator Output                                        | 163          |
| Enhanced Capture/Compare/PWM (ECCP)                      | 360          |
| Fail-Safe Clock Monitor (FSCM)                           | 64           |
| First Start Bit Timing                                   | 264          |
| Full-Bridge PWM Output                                   | 217          |
| Half-Bridge PWM Output 215,                              | 222          |
| I <sup>2</sup> C Bus Data                                | 368          |
| I <sup>2</sup> C Bus Start/Stop Bits                     | 367          |
| I <sup>2</sup> C Master Mode (7 or 10-Bit Transmission)  | 267          |
| I <sup>2</sup> C Master Mode (7-Bit Reception)           | 269          |
| I <sup>2</sup> C Stop Condition Receive or Transmit Mode | 271          |
| INT Pin Interrupt                                        | 84           |
| Internal Oscillator Switch Timing                        | . 59         |
| PWM Auto-shutdown                                        | 221          |
|                                                          | 220          |
| DWM Direction Change at Near 100% Duty Cycle             | 210          |
| PWM Output (Active-High)                                 | 213          |
| PWM Output (Active-Low)                                  | 214          |
| Repeat Start Condition                                   | 265          |
| Reset Start-up Sequence                                  | 77           |
| Reset, WDT, OST and Power-up Timer                       | 357          |
| Send Break Character Sequence                            | 305          |
| SPI Master Mode (CKE = 1, SMP = 1)                       | 365          |
| SPI Mode (Master Mode)                                   | 237          |
| SPI Slave Mode (CKE = 0)                                 | 366          |
| SPI Slave Mode (CKE = 1)                                 | 366          |
| Synchronous Reception (Master Mode, SREN)                | 310          |
| Synchronous Transmission                                 | 307          |
| Synchronous Transmission (Through TXEN)                  | 307          |
| Timer0 and Timer1 External Clock                         | 359          |
| Timer1 Incrementing Edge                                 | 181          |
| Two Speed Start-up                                       | . 62         |
| USART Synchronous Receive (Master/Slave)                 | 364          |
| USART Synchronous Transmission (Master/Slave).           | 364          |
| Wake-up from Interrupt                                   | . 90         |
|                                                          | 255          |
| Timing Parameter Symbology                               | 353          |
| Timing Requirements                                      | 000          |
| I <sup>2</sup> C Bus Data                                | 369          |
| I2C Bus Start/Stop Bits                                  | 368          |
| SPI Mode                                                 | 367          |
| TMR0 Register                                            | 28           |
| TMR1H Register                                           | 28           |
| TMR1L Register                                           | . 28         |
| TMR2 Register                                            | , 32         |
| TRIS                                                     | 338          |
| TRISA Register                                           | 122          |