

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

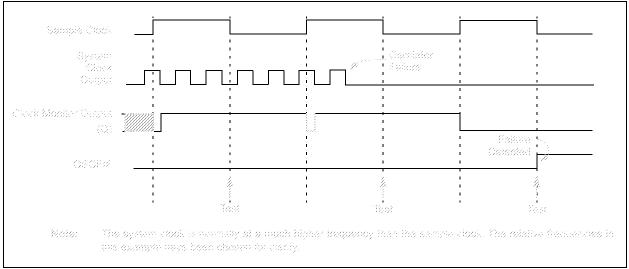
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP

	BANK 0	010(BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	—
00Eh	—	08Eh	—	10Eh	—	18Eh	—	20Eh	—	28Eh	—	30Eh	—	38Eh	—
00Fh	_	08Fh	—	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	—	38Fh	_
010h	_	090h	—	110h	—	190h	—	210h	—	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L ⁽¹⁾	391h	_
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H ⁽¹⁾	392h	—
013h	PIR3 ⁽¹⁾	093h	PIE3 ⁽¹⁾	113h	CM2CON0	193h	EEDATL	213h	SSP1MASK	293h	CCP1CON	313h	CCP3CON ⁽¹⁾	393h	—
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	—	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h		298h	CCPR2L ⁽¹⁾	318h	CCPR4L ⁽¹⁾	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H ⁽¹⁾	319h	CCPR4H ⁽¹⁾	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON ⁽¹⁾	31Ah	CCP4CON ⁽¹⁾	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MASK ⁽¹⁾	29Bh	PWM2CON ⁽¹⁾	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS ⁽¹⁾	31Ch	—	39Ch	MDCON
01Dh	—	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON ⁽¹⁾	29Dh	PSTR2CON ⁽¹⁾	31Dh	—	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS ⁽¹⁾	31Eh	—	39Eh	MDCARL
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	—	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h	General Purpose	2A0h		320h		3A0h	
	General		General Purpose Register		General Purpose Register		General Purpose Register		Register 48 Bytes ⁽¹⁾		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
	Purpose		80 Bytes		80 Bytes		80 Bytes ⁽¹⁾		Unimplemented						
06Fh	Register	0EFh		16Fh		1EFh		26Fh	Read as '0'	2EFh		36Fh		3EFh	
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh						
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1827.

6.0 REFERENCE CLOCK MODULE

The reference clock module provides the ability to send a divided clock to the clock output pin of the device (CLKR) and provide a secondary internal clock source to the modulator module. This module is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. The reference clock module includes the following features:

- System clock is the source
- Available in all oscillator configurations
- · Programmable clock divider
- Output enable to a port pin
- · Selectable duty cycle
- Slew rate control

The reference clock module is controlled by the CLKRCON register (Register 6-1) and is enabled when setting the CLKREN bit. To output the divided clock signal to the CLKR port pin, the CLKROE bit must be set. The CLKRDIV<2:0> bits enable the selection of 8 different clock divider options. The CLKRDC<1:0> bits can be used to modify the duty cycle of the output clock⁽¹⁾. The CLKRSLR bit controls slew rate limiting.

Note 1: If the base clock rate is selected without a divider, the output clock will always have a duty cycle equal to that of the source clock, unless a 0% duty cycle is selected. If the clock divider is set to base clock/2, then 25% and 75% duty cycle accuracy will be dependent upon the source clock.

For information on using the reference clock output with the modulator module, see **Section 23.0 "Data Signal Modulator"**.

6.1 Slew Rate

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the CLKRSLR bit in the CLKRCON register.

6.2 Effects of a Reset

Upon any device Reset, the reference clock module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

6.3 Conflicts with the CLKR Pin

There are two cases when the reference clock output signal cannot be output to the CLKR pin, if:

- LP, XT or HS Oscillator mode is selected.
- CLKOUT function is enabled.

Even if either of these cases are true, the module can still be enabled and the reference clock signal may be used in conjunction with the modulator module.

6.3.1 OSCILLATOR MODES

If LP, XT or HS oscillator modes are selected, the OSC2/CLKR pin must be used as an oscillator input pin and the CLKR output cannot be enabled. See **Section 5.2 "Clock Source Types**" for more information on different oscillator modes.

6.3.2 CLKOUT FUNCTION

The CLKOUT function has a higher priority than the reference clock module. <u>Therefore</u>, if the CLKOUT function is enabled by the CLKOUTEN bit in Configuration Word 1, FOSC/4 will always be output on the port pin. Reference **Section 4.0** "**Device Configuration**" for more information.

6.4 Operation During Sleep

As the reference clock module relies on the system clock as its source, and the system clock is disabled in Sleep, the module does not function in Sleep, even if an external clock source or the Timer1 clock source is configured as the system clock. The module outputs will remain in their current state until the device exits Sleep.

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-3:	PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared					
bit 7		lator Fail Interrupt Enable					
		the Oscillator Fail interrup the Oscillator Fail interru					
bit 6	C2IE: Compa	rator C2 Interrupt Enable	e bit				
	 1 = Enables the Comparator C2 interrupt 0 = Disables the Comparator C2 interrupt 						
bit 5 C1IE: Comparator C1 Interrupt Enable bit							
	 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt 						
bit 4	EEIE: EEPRO	OM Write Completion Inte	errupt Enable bit				
		the EEPROM Write Com the EEPROM Write Com	· · ·				
bit 3	BCL1IE: MSS	SP1 Bus Collision Interrup	pt Enable bit				
	 1 = Enables the MSSP1 Bus Collision Interrupt 0 = Disables the MSSP1 Bus Collision Interrupt 						
bit 2-1	Unimplemented: Read as '0'						
bit 0	CCP2IE: CCF	P2 Interrupt Enable bit					
		the CCP2 interrupt the CCP2 interrupt					

Note 1: PIC16(L)F1827 only.

8.6.6 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 8-6.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear prior
	to enabling an interrupt.

REGISTER 8-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	TMR1GIF: Timer1 Gate Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	TXIF: USART Transmit Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	SSP1IF: Synchronous Serial Port 1 (MSSP1) Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending

8.6.9 PIR4 REGISTER⁽¹⁾

The PIR4 register contains the interrupt flag bits, as shown in Register 8-9.

- **Note 1:** The PIR4 register is available only on the PIC16(L)F1827 device.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	—	—	BCL2IF	SSP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Bit is set by hardware

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
	1 = A Bus Collision was detected (must be cleared in software)0 = No Bus collision was detected
bit 0	 SSP2IF: Master Synchronous Serial Port 2 (MSSP2) Interrupt Flag bit 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting to Transmit/Receive/Bus Condition in progress

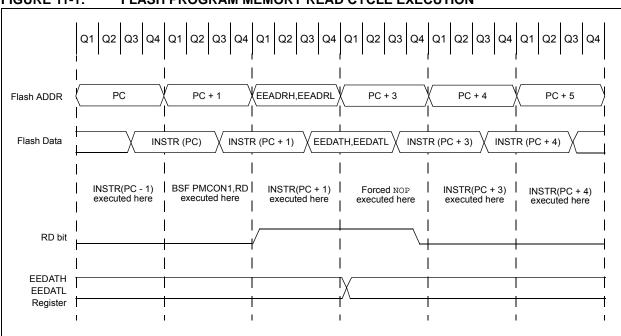

Note 1: This register is only available on PIC16(L)F1827.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIE3 ⁽¹⁾	_	-	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	89
PIE4 ⁽¹⁾	_	-	_	_	-	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	_	CCP2IF ⁽¹⁾	92
PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	94

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

Note 1: PIC16(L)F1827 only.

FIGURE 11-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE, and WREN bits of the EECON1 register.
- 4. Write 55h, then AAh, to EECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- 6. Poll the FREE bit in the EECON1 register to determine when the row erase has completed.

See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

11.3.3 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

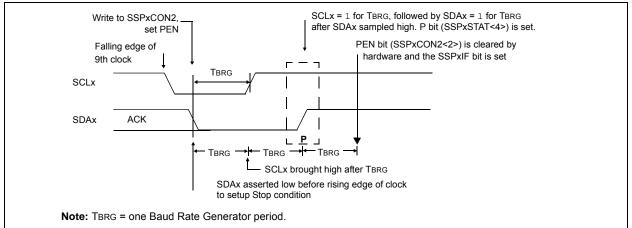
Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-2 (block writes to program memory with 32 write latches) for more details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these boundaries. At the completion of a program memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. This unlock sequence should not be interrupted.

- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEADRH:EEADRL register pair with the address of the location to be written.
- 5. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 6. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the EEDATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR bit of the EECON1 register (Flash programming unlock sequence). The entire latch block is now written to Flash program memory.

It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for eight words is shown in Example 11-5. The initial address is loaded into the EEADRH:EEADRL register pair; the eight words of data are loaded using indirect addressing.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:	b :4		b :4		nanted bit was	d aa (0)	
R = Readable		W = Writable		•	nented bit, rea		than Decete
S = Bit can or	5	x = Bit is unk				R/Value at all o	iner Resets
'1' = Bit is set		'0' = Bit is cl€	eared	HC = Bit is cl	eared by hardv	vare	
bit 7	EEPGD: Flas	sh Program/Da	ta EEPROM M	emory Select	bit		
	1 = Accesse	s program spa	ce Flash memo	-			
		s data EEPRC	-				
bit 6		-	EEPROM or C	-			
			n, User ID and I Im or data EEP				
bit 5		Write Latches					
bit 0			<u>space)</u> OR <u>CFC</u>	SS = 0 and FF	PGD = 1 (proc	oram Flash) [.]	
		-				program memoi	v latches are
	upda	ated.				C	-
						into program m	emory latche
	and	initiates a write	e of all the data	stored in the	program memo	bry latches.	
	<u> If CFGS = 0 a</u>	and EEPGD =	0: (Accessing c	lata EEPROM	1)		
			WR command i			EPROM.	
bit 4	FREE: Progr	am Flash Eras	e Enable bit				
		-	<u>space)</u> OR <u>CFC</u>			-	
			operation on the	he next WR co	ommand (clear	ed by hardware	after comple
		of erase). forms a write o	peration on the	next WR com	mand		
	0 - 1 Ch		peration on the		inana.		
			0: (Accessing c				
	-			will initiate bot	h a erase cycle	e and a write cyc	de.
bit 3		PROM Error F	•				
			improper prog et attempt (write			empt or termination	tion (bit is se
			operation comp				
bit 2		ram/Erase Ena	• •	j			
	-	rogram/erase o					
			rasing of progra	am Flash and	data EEPROM	l	
bit 1	WR: Write Co	ontrol bit					
			sh or data EEPI				
			ned and the bit e set (not cleare			operation is co	mplete.
		•	on to the Flash			e and inactive.	
bit 0	RD: Read Co	-					
			lash or data E	EPROM read	d. Read takes	one cycle. RD	is cleared in
						, .	
	nardware	e. The RD bit o	an only be set	(not cleared) i	n software.		


REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

NOTES:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
C4TSI	EL<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	EL<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is uncl	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	C4TSEL<1:0	>: CCP4 Timer	Selection				
		based off Time					
		based off Time					
	10 =CCP4 is 11 =Reserve	based off Time	r 6 in PWM M	ode			
bit 5-4		o >: CCP3 Timer	Soloction				
DIL 3-4		based off Time		odo			
		based off Time					
		based off Time					
	11 =Reserve	d					
bit 3-2	C2TSEL<1:0	>: CCP2 Timer	Selection				
	00 00. 2.0	based off Time		0.0			
		based off Time					
	10 =CCP2 is 11 =Reserve	based off Time	r 6 in PWM M	ode			
bit 1-0		o >: CCP1 Timer	Soloction				
DIL 1-0		based off Time		odo			
		based off Time					
		based off Time					
	11 =Reserve						

REGISTER 24-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER

FIGURE 25-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

25.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

25.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

25.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

25.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 25-31).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	_	—	—	_	_	_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG			EU	SART Recei	ve Data Regis	ter			290*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL				BRG	<7:0>				297*
SPBRGH				BRG∢	<15:8>				297*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Asynchronous Reception.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7			·		·		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7		Port Enable bi			••••••		
		rt enabled (cor rt disabled (he		I and I X/CK p	ins as serial po	rt pins)	
bit 6		ceive Enable t					
2	1 = Selects 9						
	0 = Selects 8						
bit 5	SREN: Single	e Receive Enal	ole bit				
	Asynchronou	<u>s mode</u> :					
	Don't care	mada Maata					
	-	mode – Maste single receive	<u>r</u> .				
		single receive					
		ared after rece	ption is compl	ete.			
	•	mode – Slave					
	Don't care						
bit 4		nuous Receive	Enable bit				
	<u>Asynchronou</u> 1 = Enables						
	0 = Disables						
	<u>Synchronous</u>						
		continuous rec continuous rec		ole bit CREN is	cleared (CREN	l overrides SR	EN)
bit 3	ADDEN: Add	ress Detect Er	able bit				
	Asynchronou	<u>s mode 9-bit (</u> F	RX9 = 1):				
				•	d the receive bu		
		address detec s mode 8-bit (F		are received a	nd ninth bit can	be used as pa	rity bit
	Don't care		<u>(//9 – 0)</u> .				
bit 2	FERR: Frami	na Error bit					
		error (can be ι	pdated by rea	Iding RCREG I	register and rec	eive next valid	byte)
bit 1	OERR: Overr	•					
		error (can be c	leared by clea	ring bit CREN)		
	0 = No overn		2	-			
bit 0		bit of Received					
	This can be a	ddress/data bi	t or a parity bi	and must be o	calculated by us	er firmware.	

REGISTER 26-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Fosc	= 32.00	0 MHz	Fosc = 20.000 MHz			Foso	Fosc = 18.432 MHz			= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	_		_	_	_	_	_	_	_
1200	—		—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	—	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—	—	_	—	—	—	—	—	—	—	—	—

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0					
BAUD	Fos	c = 8.000) MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_	
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_	
19.2k	—	_	_	_	_	_	19.20k	0.00	2	_	_	_	
57.6k	—	_	—	—	_	—	57.60k	0.00	0	_	_	—	
115.2k	—	_	_	—	_	_	_	_	_	_	_	—	

					SYNC	C = 0, BRGH	l = 1, BRC	G16 = 0				
BAUD	Foso	= 32.00	0 MHz	Fosc = 20.000 MHz			Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	—	—			_		_	—		—	_
1200	_	_	—	_		—	_	_	—	—	_	—
2400		_	_	_	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SY	'NC = 1,	BRG16 = 1			
BAUD	Foso	: = 32.00	0 MHz	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SΥ	′NC = 1,	BRG16 = 1			
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	—	—

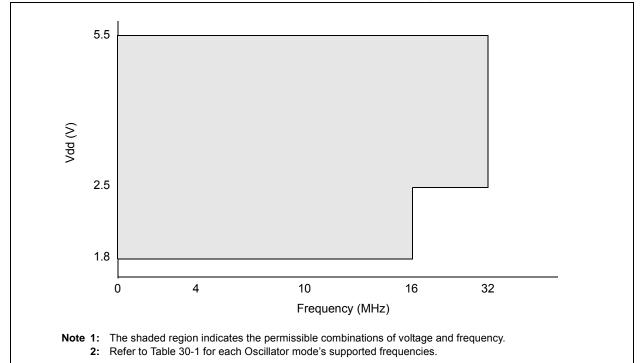
26.4.2.3 EUSART Synchronous Slave Reception

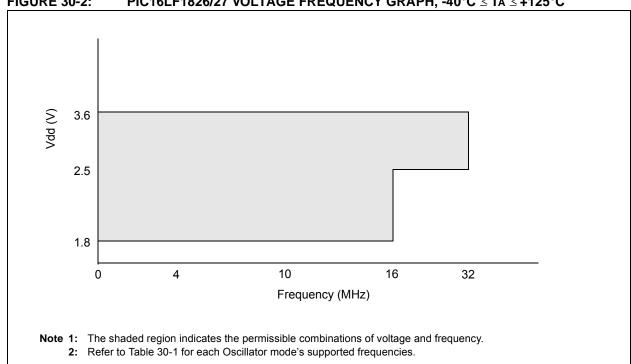
The operation of the Synchronous Master and Slave modes is identical (Section 26.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is
 never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 26.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the 8 Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

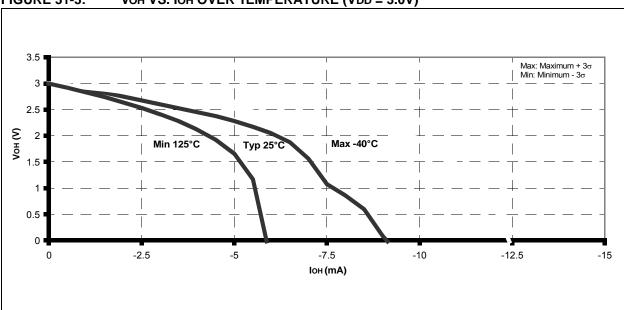
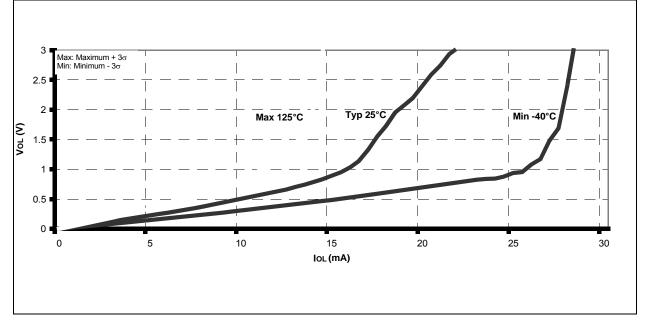

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	—	_	—	—		_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG			EU	SART Recei	ve Data Regis	ter			290*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

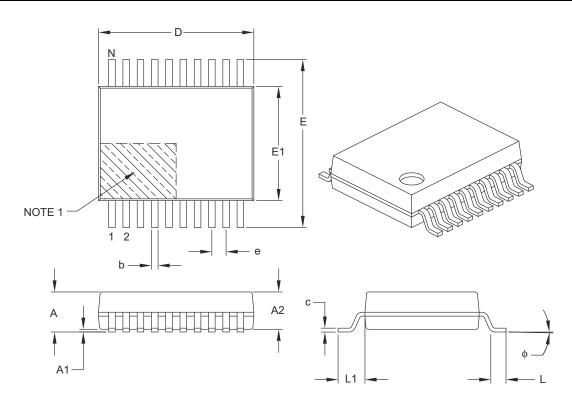

TABLE 26-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Slave Reception.
* Page provides register information.

Note 1: PIC16(L)F1827 only.

FIGURE 30-2: PIC16LF1826/27 VOLTAGE FREQUENCY GRAPH, -40°C < TA <+125°C


FIGURE 31-3: VOH VS. IOH OVER TEMPERATURE (VDD = 3.0V)

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	с	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B