

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1826t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 18/20/28-PIN SUMMARY (PIC16(L)F1826/27)

Ю	18-Pin PDIP/SOIC	20-Pin SSOP	28-Pin QFN/UQFN	ANSEL	A/D	Reference	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	Interrupt	Modulator	Pull-up	Basic
RA0	17	19	23	Y	AN0	_	CPS0	C12IN0-	—	—	—	—	SDO2 ⁽²⁾	_	_	Ν	—
RA1	18	20	24	Y	AN1	—	CPS1	C12IN1-	_	_	_	_	SS2 ⁽²⁾	_	_	N	_
RA2	1	1	26	Y	AN2	VREF- DACOUT	CPS2	C12IN2- C12IN+	—	—	_	—	_	_	-	Ν	_
RA3	2	2	27	Y	AN3	VREF+	CPS3	C12IN3- C1IN+ C1OUT	SRQ	_	CCP3 ⁽²⁾	—			_	Ν	_
RA4	3	3	28	Y	AN4	—	CPS4	C2OUT	SRNQ	TOCKI	CCP4 ⁽²⁾	—	_	—	_	Ν	—
RA5	4	4	1	Ν	-	—	—	—	—	—	—	—	SS1 ⁽¹⁾	—	—	Y ⁽³⁾	MCLR, VPP
RA6	15	17	20	Ν	-	-		—	—	—	P1D ⁽¹⁾ P2B ^(1,2)	_	SDO1 ⁽¹⁾		_	Ν	OSC2 CLKOUT CLKR
RA7	16	18	21	Ν	-	_	_	_	_	_	P1C ⁽¹⁾ CCP2 ^(1,2) P2A ^(1,2)	_	_	—	_	Ν	OSC1 CLKIN
RB0	6	7	7	N	-	_	—	_	SRI	T1G	CCP1 ⁽¹⁾ P1A ⁽¹⁾ FLT0	_	_	INT IOC	-	Y	_
RB1	7	8	8	Y	AN11	_	CPS11	_	_	_	—	RX ^(1,4) DT ^(1,4)	SDA1 SDI1	IOC	-	Y	—
RB2	8	9	9	Y	AN10		CPS10	_	_	_	_	RX ⁽¹⁾ ,DT ⁽¹⁾ TX ^(1,4) CK ^(1,4)	SDA2 ⁽²⁾ SDI2 ⁽²⁾ SDO1 ^(1,4)	IOC	MDMIN	Y	_
RB3	9	10	10	Y	AN9	-	CPS9	—	—	—	CCP1 ^(1,4) P1A ^(1,4)	—	_	IOC	MDOUT	Y	—
RB4	10	11	12	Y	AN8	_	CPS8	—	—	—	_	—	SCL1 SCK1	IOC	MDCIN2	Y	—
RB5	11	12	13	Y	AN7	-	CPS7	_	_	_	P1B	TX ⁽¹⁾ CK ⁽¹⁾	SCL2 ⁽²⁾ SCK2 ⁽²⁾ SS1 ^(1,4)	IOC	-	Y	_
RB6	12	13	15	Y	AN5	_	CPS5	_	_	T1CKI T1OSI	P1C ^(1,4) CCP2 ^(1,2,4) P2A ^(1,2,4)	_	_	IOC	_	Y	ICSPCLK/ ICDCLK
RB7	13	14	16	Y	AN6	-	CPS6	_		T1OSO	P1D ^(1,4) P2B ^(1,2,4)	_	_	IOC	MDCIN1	Y	ICSPDAT/ ICDDAT
Vdd	14	15,16	17,19		—	—		—	_	_	_	—	_		_	_	Vdd
Vss	5	5,6	3,5	_	_	—	_	-	_	_	_	_	_	_	_	_	Vss

PIC16(L)F1826/27

 Note
 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

 2: Functions are only available on the PIC16(L)F1827.

 3: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.

 4: Default function location.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

8.6.5 PIE4 REGISTER⁽¹⁾

The PIE4 register contains the interrupt enable bits, as shown in Register 8-5.

- **Note 1:** The PIE4 register is available only on the PIC16(L)F1827 device.
 - 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	BCL2IE	SSP2IE
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IE: MSSP2 Bus Collision Interrupt Enable bit
	1 = Enables the MSSP2 Bus Collision Interrupt0 = Disables the MSSP2 Bus Collision Interrupt
bit 0	SSP2IE: Master Synchronous Serial Port 2 (MSSP2) Interrupt Enable bit
	1 = Enables the MSSP2 interrupt0 = Disables the MSSP2 interrupt

Note 1: This register is only available on PIC16(L)F1827.

12.3 PORTB and TRISB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-9). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-8) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.3.1 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference **Section 13.0 "Interrupt-On-Change"** for more information.

12.3.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-11). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION register.

12.3.3 ANSELB REGISTER

The ANSELB register (Register 12-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no affect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)
- Capacitive Sensing (CPS) module

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, and DAC and CPS is routed through two independent programmable gain amplifiers. Each amplifier can be configured to amplify the reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 16.0** "**Analog-to-Digital Converter** (**ADC**) **Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 16.0 "Digital-to-Analog Converter (DAC) Module" and Section 18.0 "Comparator Module" and Section 27.0 "Capacitive Sensing Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See **Section 30.0** "**Electrical Specifications**" for the minimum delay requirement.

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 16-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<1:0>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use.

FIGURE 17-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

FIGURE 25-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

REGISTER 25-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/	0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPxOV	SSPxEN	CKP		SSPxM	/<3:0>	
bit 7	•	•		-			bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is unch	nanged	x = Bit is unknown		-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7	WCOL: Write Co Master mode:	Ilision Detect bit		â			
	1 = A write to th 0 = No collision <u>Slave mode:</u> 1 = The SSPxB 0 = No collision	he SSPxBUF registe ו UF register is written v ו	r was attempted vhile it is still tran	I while the I ² C cond smitting the previous	itions were not valid word (must be cleare	for a transmission to d in software)	be started
bit 6	SSPxOV: Receive In SPI mode: 1 = A new byte Overflow cas setting over SSPxBUF r 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	ve Overflow Indicator is received while the S an only occur in Slave flow. In Master mode, register (must be clean w ecceived while the SSI leared in software).	bit ⁽¹⁾ SSPxBUF registe mode. In Slave the overflow bit i ed in software). PxBUF register	er is still holding the p mode, the user must s not set since each i is still holding the p	revious data. In case read the SSPxBUF, new reception (and tr revious byte. SSPxC	of overflow, the data ir even if only transmitti ansmission) is initiate DV is a "don't care" i	n SSPxSR is lost. ing data, to avoid d by writing to the n Transmit mode
bit 5	SSPxEN: Synch In both modes, w In <u>SPI mode:</u> 1 = Enables set 0 = Disables set <u>In I²C mode:</u> 1 = Enables the 0 = Disables set	ronous Serial Port Er /hen enabled, these rial port and configure erial port and configure eserial port and configure erial port and configure	hable bit bins must be pro s SCKx, SDOx, res these pins a ures the SDAx a res these pins a	operly configured as SDIx and SSx as the as I/O port pins and SCLx pins as the as I/O port pins	s input or output source of the serial source of the serial p	port pins ⁽²⁾ port pins ⁽³⁾	
bit 4	CKP : Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I ² C Slave mod SCLx release co 1 = Enable clock k 0 = Holds clock k In I ² C Master mod Unused in this m	rity Select bit clock is a high level clock is a low level le: ntrol ow (clock stretch). (U de: ode	ised to ensure o	lata setup time.)			
bit 3-0	SSPxM<3:0>: S 0000 = SPI Masi 0001 = SPI Masi 0011 = SPI Masi 0011 = SPI Masi 0010 = SPI Slav 0101 = SPI Slav 0101 = I ² C Slave 1001 = I ² C Slave 1001 = Reserver 1010 = SPI Masi 1011 = I ² C firmw 1100 = Reserver 1101 = Reserver 1101 = Reserver 1101 = Reserver 1101 = Reserver 1101 = Reserver	ynchronous Serial Po ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = To e mode, clock = SCK e mode, clock = SCK e mode, clock = SCK e mode, clock = SCK e mode, clock = Fo d ter mode, clock = Fo vare controlled Maste d d e mode, 7-bit address e mode, 7-bit address e mode, 10-bit address	ort Mode Select SC/4 SC/16 SC/64 R2 output/2 x pin, <u>SSx</u> pin of x pin, <u>SSx</u> pin of SS SC/(4 * (SSPxAE SC/(4 * (SSPxAE r mode (Slave i s with Start and ss with Start and	bits control enabled control disabled, <u>SS</u> DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾ dle) Stop bit interrupts e d Stop bit interrupts	x can be used as I/C nabled enabled) pin	
Note 1: 2: 3: 4:	In Master mode, the ov When enabled, these p When enabled, the SD/ SSPxADD values of 0.	erflow bit is not set s ins must be properly Ax and SCLx pins mu 1 or 2 are not suppor	ince each new r configured as in ist be configure ted for I ² C Mod	eception (and trans nput or output. d as inputs. le.	mission) is initiated	oy writing to the SSF	PxBUF register.

5: SSPxADD value of '0' is not supported. Use SSPxM = 0000 instead.

FIGURE 26-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

FIGURE 26-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

97 The \$339-4.87 remains in him while the WOE hit is set.

TABLE 26-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	_	—	_	—	_	_	_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	-	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL	BRG<7:0>						297*		
SPBRGH	BRG<15:8>						297*		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXREG	EUSART Transmit Data Register					287*			
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn			
Syntax:	[label]ADDFSR FSRn, k			
Operands:	$-32 \le k \le 31$ n \in [0, 1]			
Operation:	$FSR(n) + k \rightarrow FSR(n)$			
Status Affected:	None			
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.			

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap around.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.			

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f			
Syntax:	[<i>label</i>] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ASRF	Arithmetic Right Shift			
Syntax:	[<i>label</i>]ASRF f{,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f<7>) \rightarrow dest<7>$ $(f<7:1>) \rightarrow dest<6:0>,$ $(f<0>) \rightarrow C,$			
Status Affected:	C, Z			
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in reg-			

ister 'f'.

	•	register f	►	С	

ADDWFC	ADD W and CARRY bit to f			
Syntax:	[<i>label</i>] ADDWFC f {,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) + (C) \rightarrow dest			
Status Affected:	C, DC, Z			
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.			

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \leq k \leq 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.			

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .OR. $k \rightarrow$ (W)		
Status Affected:	Z		
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.		

INCF	NCF Increment f		Inclusive OR W with f		
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)		
Status Affected:	Z	Status Affected:	Z		
Description:	escription: The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	-40°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1826/27	-0.3V to +6.5V
Voltage on VDD with respect to Vss, PIC16LF1826/27	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	-0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	114 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	292 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	
Clamp current, Ік (VPIN < 0 or VPIN > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VD IOL).	□ – Vон) x Iон} + ∑(Vol x
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause p	permanent damage to the

⁺ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSPx module	1.5Tcy			
SP101* TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a minimum of 1.5 MHz	
		400 kHz mode	1.3	-	μS	Device must operate at a minimum of 10 MHz	
			SSPx module	1.5Tcy	_	—	
SP102* TR	SDAx and SCLx rise time	100 kHz mode	—	1000	ns		
		400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDAx and SCLx fall	100 kHz mode	—	250	ns	
	time	time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106* THD:DAT	Data input hold time	100 kHz mode	0		ns		
		400 kHz mode	0	0.9	μS		
SP107* TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)	
		400 kHz mode	100		ns		
SP109* TAA	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—		ns	
SP110* TBUF	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading		_	400	pF	

TABLE 30-16:	I ² C™ BUS DATA	REQUIREMENTS
--------------	----------------------------	--------------

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCLx signal. If such a device does stretch the low period of the SCLx signal, it must output the next data bit to the SDAx line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.