

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1827-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F1826/27 are described within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1826/27 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16F/LF1826	PIC16(L)F1827
ADC		٠	•
Capacitive Sensing Mod	dule	٠	•
Digital-to-Analog Conve	rter (DAC)	•	•
Digital Signal Modulator	(DSM)	•	•
EUSART		٠	•
Fixed Voltage Reference	e (FVR)	٠	•
Reference Clock Module	e	٠	•
SR Latch		•	•
Capture/Compare/PWM	Modules		
	ECCP1	•	•
	ECCP2		•
	CCP3		•
	CCP4		•
Comparators			
	C1	•	•
	C2	•	•
Master Synchronous Se	erial Ports		
	MSSP1	•	•
	MSSP2		•
Timers			
	Timer0	•	•
	Timer1	•	•
	Timer2	•	•
	Timer4		•
	Timer6		

Name	Function	nction Input Type		t Description		
RB3/AN9/CPS9/MDOUT/ CCP1 ^(1,3) /P1A ^(1,3)	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.		
	AN9	AN	_	A/D Channel 9 input.		
	CPS9	AN	_	Capacitive sensing input 9.		
	MDOUT	_	CMOS	Modulator output.		
	CCP1	ST	CMOS	Capture/Compare/PWM1.		
	P1A	_	CMOS	PWM output.		
RB4/AN8/CPS8/SCL1/SCK1/ MDCIN2	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.		
	AN8	AN	_	A/D Channel 8 input.		
	CPS8	AN	_	Capacitive sensing input 8.		
	SCL1	I ² C™	OD	I ² C™ clock 1.		
	SCK1	ST	CMOS	SPI clock 1.		
	MDCIN2	ST	—	Modulator Carrier Input 2.		
RB5/AN7/CPS7/P1B/TX ⁽¹⁾ /CK ⁽¹⁾ / SCL2 ⁽²⁾ /SCK2 ⁽²⁾ /SS1 ^(1,3)	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.		
	AN7	AN	—	A/D Channel 7 input.		
	CPS7	AN	—	Capacitive sensing input 7.		
	P1B	_	CMOS	PWM output.		
	TX	_	CMOS	USART asynchronous transmit.		
	СК	ST	CMOS	USART synchronous clock.		
	SCL2	I ² C™	OD	I ² C [™] clock 2.		
	SCK2	ST	CMOS	SPI clock 2.		
	SS1	ST	_	Slave Select input 1.		
RB6/AN5/CPS5/T1CKI/T1OSI/ P1C ^(1,3) /CCP2 ^(1,2,3) /P2A ^(1,2,3) /	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.		
CSPCLK	AN5	AN	_	A/D Channel 5 input.		
	CPS5	AN	_	Capacitive sensing input 5.		
	T1CKI	ST	—	Timer1 clock input.		
	T10S0	XTAL	XTAL	Timer1 oscillator connection.		
	P1C		CMOS	PWM output.		
	CCP2	ST	CMOS			
	P2A	_	CMOS	PWM output.		
	ICSPCLK	ST	_	Serial Programming Clock.		
RB7/AN6/CPS6/T1OSO/ P1D ^(1,3) /P2B ^(1,2,3) /MDCIN1/	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.		
CSPDAT	AN6	AN	—	A/D Channel 6 input.		
	CPS6	AN	_	Capacitive sensing input 6.		
	T10S0	XTAL	XTAL	Timer1 oscillator connection.		
	P1D	_	CMOS	PWM output.		
	P2B		CMOS	PWM output.		
	MDCIN1	ST		Modulator Carrier Input 1.		
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.		

TARI E 1-2. PIC16/I)F1826/27 PINOLIT DESCRIPTION (CONTINUED)

XTAL = Crystal

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C levels

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Functions are only available on the PIC16(L)F1827.

3: Default function location.

HV = High Voltage

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower 8 bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

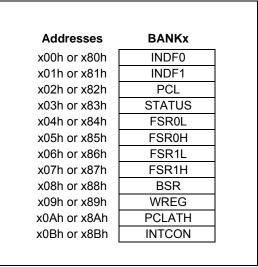
The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants					
RETLW	DATA0		;Index0	data	
RETLW	DATA1		;Index1	data	
RETLW	DATA2				
RETLW	data3				
my_functi	on				
;… LOI	TS OF CO	DE			
MOVLW	LOW cc	nstant	LS		
MOVWF	FSR1L				
MOVLW	HIGH c	onstar	nts		
MOVWF	FSR1H				
MOVIW	0[FSR1]				
;THE PROG	RAM MEMO	RY IS	IN W		

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):


- 12 core registers
- · 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

Data Memory uses a 12-bit address. The upper 7-bit of the address define the Bank address and the lower 5-bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For for detailed information, see Table 3-5.

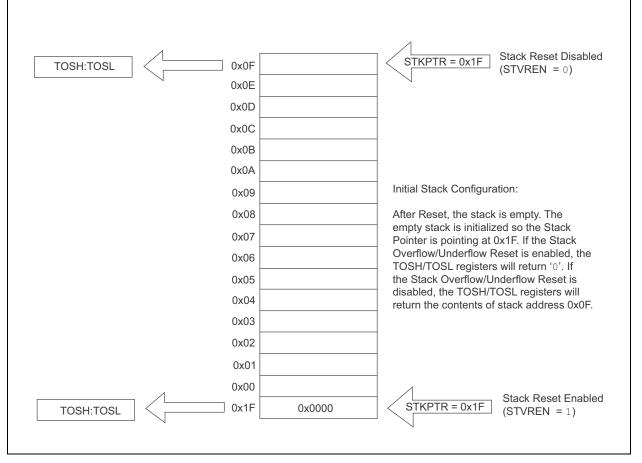
3.4 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-5 through 3-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Word 2). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

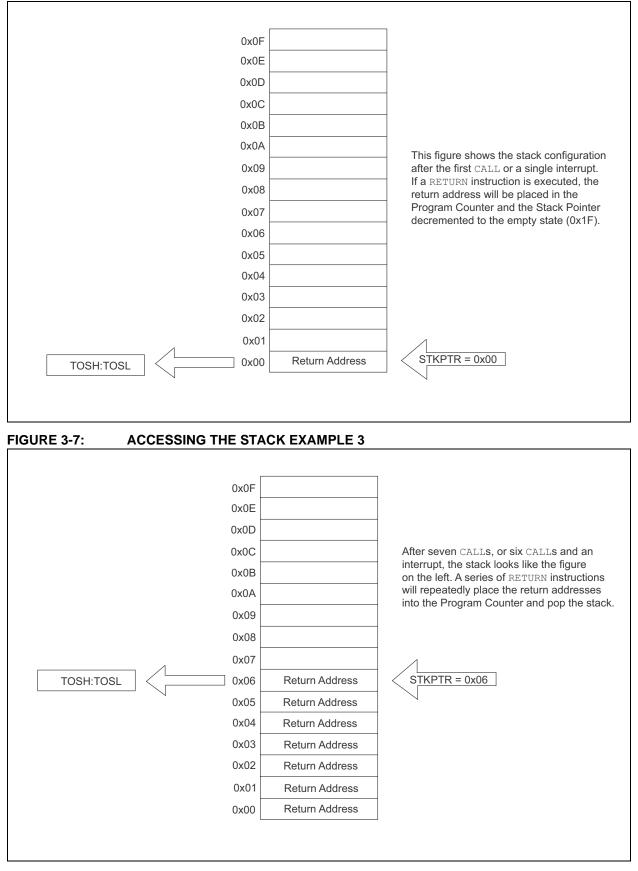
Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.4.1 ACCESSING THE STACK


The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is 5 bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement STKPTR.


Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

PIC16(L)F1826/27

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

PIC16(L)F1826/27

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
SENETORC/	UFBNTOSC (FBCSS and WDT (Fbablad)
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
nfintosc/ i Mfintosc	LENETCISC (ENNET FISCHI es WIDT enabled)
HFINTOSC/ MEINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
LEPEROSC 1 LEPEROSC	EFIRITOSCARFINITOSC LEVELOUSC turns of univer WET or FICER is enabled
KUT DIR EKARDKA	Control Paris, Republic Sono, Second Receiver
MENTOSC/	
\$2CF <330>	<u>+ C X 19 0</u>
System Grook	

8.6.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 8-2.

Note:	Bit PEIE of the INTCON register must be						
	set to enable any peripheral interrupt.						

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TMR1GIE | ADIE | RCIE | TXIE | SSP1IE | CCP1IE | TMR2IE | TMR1IE |
| bit 7 | | | | | | | bit 0 |

Legend:							
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is s	set	'0' = Bit is cleared					
bit 7	TMR1GIE	: Timer1 Gate Interrupt Enat	le bit				
		es the Timer1 Gate Acquisitions the Timer1 Gate Acquisitions the Timer1 Gate Acquisitions the Timer1 Gate Acquisitions the transmission of transmission of the transmission of					
bit 6	ADIE: A/D	Converter (ADC) Interrupt E	Enable bit				
		es the ADC interrupt es the ADC interrupt					
bit 5	RCIE: US	ART Receive Interrupt Enabl	le bit				
		es the USART receive interrules the USART receive interrules the USART receive interr	•				
bit 4	TXIE: USA	TXIE: USART Transmit Interrupt Enable bit					
		es the USART transmit interr es the USART transmit inter	•				
bit 3	1 = Enable	Synchronous Serial Port 1 (N es the MSSP1 interrupt es the MSSP1 interrupt	ISSP1) Interrupt Enable bit				
bit 2		CCP1 Interrupt Enable bit					
		es the CCP1 interrupt es the CCP1 interrupt					
bit 1	TMR2IE:	TMR2 to PR2 Match Interrup	t Enable bit				
		es the Timer2 to PR2 match es the Timer2 to PR2 match	1				
bit 0	1 = Enable	Timer1 Overflow Interrupt En es the Timer1 overflow interr es the Timer1 overflow inter	upt				

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-3:	PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x =		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared					
bit 7		lator Fail Interrupt Enable					
	 1 = Enables the Oscillator Fail interrupt 0 = Disables the Oscillator Fail interrupt 						
bit 6	C2IE: Compa	rator C2 Interrupt Enable	e bit				
		the Comparator C2 interr the Comparator C2 inter	•				
bit 5	C1IE: Compa	rator C1 Interrupt Enable	bit				
		the Comparator C1 interr the Comparator C1 inter	•				
bit 4	EEIE: EEPRO	OM Write Completion Inte	errupt Enable bit				
		the EEPROM Write Com the EEPROM Write Com	· · ·				
bit 3	BCL1IE: MSS	SP1 Bus Collision Interrup	pt Enable bit				
		the MSSP1 Bus Collision the MSSP1 Bus Collisior					
bit 2-1	Unimplemen	ted: Read as '0'					
bit 0	CCP2IE: CCF	P2 Interrupt Enable bit					
		the CCP2 interrupt the CCP2 interrupt					

Note 1: PIC16(L)F1827 only.

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EED-ATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Word 2, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

12.2.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-2.

Pin Name	Function Priority ⁽¹⁾
RA0	SDO2 (PIC16(L)F1827 only) RA0
RA1	SS2 (PIC16(L)F1827 only) RA1
RA2	DACOUT (DAC) RA2
RA3	SRQ (SR latch) CCP3 (PIC16(L)F1827 only) C1OUT (Comparator) RA3
RA4	SRNQ (SR latch) CCP4 (PIC16(L)F1827 only) T0CKI C2OUT (Comparator) RA4
RA5	Input only pin
RA6	OSC2 (enabled by Configura- tion Word) CLKOUT CLKR SDO1 P1D P2B (PIC16(L)F1827 only) RA6
RA7	OSC1/CLKIN (enabled by Configuration Word) P1C CCP2 (PIC16(L)F1827 only) P2A (PIC16(L)F1827 only) RA7

TABLE 12-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

REGISTER 12-3: PORTA: PORTA REGISTER

R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7							bit 0	
Legend:								
R = Readable bi	it	W = Writable b	oit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	red					

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-4: TRISA: PORTA TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TRISA<7:6>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 5	TRISA5: RA5 Port Tri-State Control bit This bit is always '1' as RA5 is an input only
bit 4-0	TRISA<4:0>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	LATA<7:6>: RA<7:6> Output Latch Value bits ⁽¹⁾
---------	---

bit 5 Unimplemented: Read as '0

bit 4-0 LATA<4:0>: RA<4:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

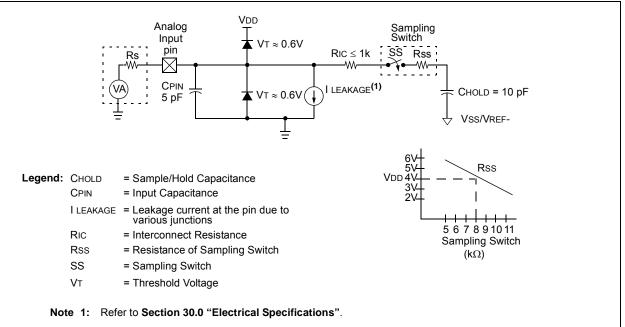
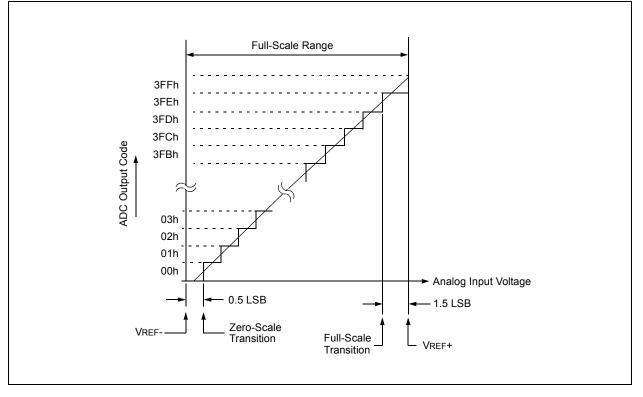

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	127
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	127
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	128

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

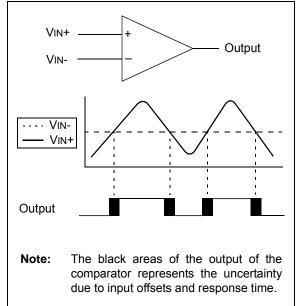

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

PIC16(L)F1826/27

FIGURE 16-4: ANALOG INPUT MODEL

19.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:


- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 19-1: S

SINGLE COMPARATOR

24.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

24.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119		
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226		
CCPRxL	Capture/Cor	Capture/Compare/PWM Register x Low Byte (LSB)									
CCPRxH	Capture/Cor	mpare/PWM	Register x H	igh Byte (MS	B)				204*		
CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	170		
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCH1	C1NCH0	171		
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	170		
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_		C2NCH1	C2NCH0	171		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87		
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE			CCP2IE ⁽²⁾	88		
PIE3 ⁽²⁾	—	_	CCP4IE	CCP3IE	TMR6IE		TMR4IE	—	89		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91		
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF			CCP2IF ⁽²⁾	92		
PIR3 ⁽²⁾	—	—	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93		
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	185		
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS1	T1GSS0	186		
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register										
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register										
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127		

TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by Capture mode.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 24-5 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 M	Hz)
		····/

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

25.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCLx pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPxOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the 8th falling edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

25.5 I²C SLAVE MODE OPERATION

The MSSPx Slave mode operates in one of four modes selected in the SSPxM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operated the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

25.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 25-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes Idle and no indication is given to the software that anything happened.

The SSPx Mask register (Register 25-5) affects the address matching process. See **Section 25.5.9 "SSPx Mask Register**" for more information.

25.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

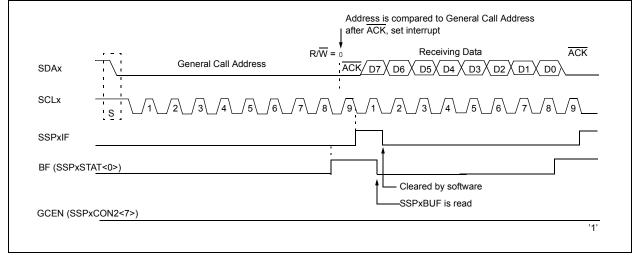
25.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all 8 bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

25.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 25-23 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

25.5.9 SSPX MASK REGISTER

An SSPx Mask (SSPxMSK) register (Register 25-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSPx operation until written with a mask value.

The SSPx Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSPx mask has no effect during the reception of the first (high) byte of the address.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sygney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/18/11