

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1827t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
30Ch	—	Unimplement	ed							—	—
30Dh	—	Unimplement	implemented								
30Eh	_	Unimplement	nimplemented								
30Fh	_	Unimplement	ed							—	—
310h	—	Unimplement	ed							—	—
311h	CCPR3L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (MSB))					xxxx xxxx	uuuu uuuu
313h	CCP3CON ⁽¹⁾	—	—	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000
314h	—	Unimplement	ed							_	—
315h	—	Unimplement	ed							_	_
316h	—	Unimplement	ed							_	_
317h	—	Unimplement	ed							_	_
318h	CCPR4L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (LSB)						xxxx xxxx	uuuu uuuu
319h	CCPR4H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (MSB))					xxxx xxxx	uuuu uuuu
31Ah	CCP4CON ⁽¹⁾	_	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000	00 0000
31Bh	—	Unimplement	ed	•	•	•	•	•	•	_	_
31Ch	—	Unimplement	ed							_	_
31Dh	—	Unimplement	ed							_	_
31Eh	—	Unimplement	ed							_	_
31Fh	—	Unimplement	ed							_	_
Bank 7											
38Ch	_	Unimplement	ed							_	_
38Dh	—	Unimplement	ed							_	_
38Eh	—	Unimplement	ed							_	_
38Fh	—	Unimplement	ed							_	_
390h	_	Unimplement	ed							_	_
391h	_	Unimplement	ed							_	_
392h	_	Unimplement	ed							_	_
393h	_	Unimplement	ed							_	_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimplement	ed							_	—
398h	_	Unimplement	ed							_	_
399h	—	Unimplement	ed							_	_
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRDC1	CLKRDC0	CLKRDIV2	CLKRDIV1	CLKRDIV0	0011 0000	0011 0000
39Bh	—	Unimplement	ed							_	—
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	_	_	_	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	—	_	—	MDMS3	MDMS2	MDMS1	MDMS0	x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL3	MDCL2	MDCL1	MDCL0	xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—	MDCH3	MDCH2	MDCH1	MDCH0	xxx- xxxx	uuu- uuuu

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

3.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 7 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

7.3 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Word 1 and the LVP bit of Configuration Word 2 (Table 7-2).

TABLE 7-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR		
0	0	Disabled		
1	0	Enabled		
x	1	Enabled		

7.3.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

7.3.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 12.2** "**PORTA Registers**" for more information.

7.4 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the WDT Reset. See **Section 10.0** "**Watchdog Timer**" for more information.

7.5 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 7-4 for default conditions after a RESET instruction has occurred.

7.6 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Word 2. See **Section 3.4.2 "Overflow/Underflow Reset**"for more information.

7.7 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

7.8 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the \overline{PWRTE} bit of Configuration Word 1.

7.9 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 7-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-3:	PIE2: PERIPHERAL	INTERRUPT ENABL	E REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE ⁽¹⁾
bit 7							bit 0

Logond			
Legenu.			
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7	OSFIE: Oscil	lator Fail Interrupt Enable bit	
	1 = Enables	the Oscillator Fail interrupt	
	0 = Disables	the Oscillator Fail interrupt	
bit 6	C2IE: Compa	arator C2 Interrupt Enable bit	
	1 = Enables	the Comparator C2 interrupt	
	0 = Disables	the Comparator C2 interrup	t
bit 5 C1IE: Comparator C1 Interrupt Enable bit			
	1 = Enables	the Comparator C1 interrupt	
	0 = Disables	the Comparator C1 interrup	t
bit 4	EEIE: EEPRO	OM Write Completion Interru	pt Enable bit
	1 = Enables	the EEPROM Write Complete	tion interrupt
	0 = Disables	the EEPROM Write Comple	tion interrupt
bit 3	BCL1IE: MS	SP1 Bus Collision Interrupt E	Enable bit
	1 = Enables	the MSSP1 Bus Collision Int	errupt
	0 = Disables	the MSSP1 Bus Collision In	terrupt
bit 2-1	Unimplemen	nted: Read as '0'	
bit 0	CCP2IE: CC	P2 Interrupt Enable bit	
	1 = Enables	the CCP2 interrupt	
	0 = Disables	the CCP2 interrupt	

Note 1: PIC16(L)F1827 only.

8.6.8 PIR3 REGISTER

The PIR3 register contains the interrupt flag bits, as shown in Register 8-8.

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global								
	Enable bit, GIE, of the INTCON register.								
	User software should ensure the								
	appropriate interrupt flag bits are clear prior								
	to enabling an interrupt.								

REGISTER 8-8: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3⁽¹⁾

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	—	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—
bit 7							bit 0

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set	'0' = Bit is cleared							

bit 7-6	Unimplemented: Read as '0'
bit 5	CCP4IF: CCP4 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	CCP3IF: CCP3 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	TMR6IF: TMR6 to PR6 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	Unimplemented: Read as '0'
bit 1	TMR4IF: TMR4 to PR4 Match Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	Unimplemented: Read as '0'

Note 1: This register is only available on PIC16(L)F1827.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>		—	SCS<1:0>		69
STATUS	—	_	—	TO	PD	Z	DC	С	21
WDTCON	—	_		Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IRCF<3:0> — SCS<1:0> — SCS<1:0> — TO PD Z DC C WDTPS<4:0> SWDTEN SWDTEN				99	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	4.4
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			44		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	L EEDATL	;
MOVF	EEDATL, W	;EEDATL not changed
		;from previous write
BSF	EECON1, RD	;YES, Read the
		;value written
XORWF	EEDATL, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue

19.2 Comparator Control

Each comparator has 2 control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 19-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 19-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 shows the output state versus input conditions, including polarity control.

TABLE 19-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- · Selectable Gate Source Polarity

- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt
- Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
CCP1CON	PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	127
TMR1H	Holding Re	gister for the	Most Signi	ficant Byte o	of the 16-bit	TMR1 Regi	ster		177*
TMR1L	Holding Re	gister for the	Least Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		177*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	186

TABLE 21-5: SUMMARY OF REGISTERS A	ASSOCIATED WITH TIMER1
------------------------------------	------------------------

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

24.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 24-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.

Figure 24-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 24-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 24-12: EXAMPLE OF PWM DIRECTION CHANGE

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

24.5 CCP Control Registers

REGISTER 24-1: CCPxCON: CCPx CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PxM	<1:0>(1)	DCxB<1:0>			CCPx		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	i	U = Unimpleme	nted bit, read as	'0'	
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/V	alue at all other	Reset
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 7-6	PxM<1:0>: En	hanced PWM Ou	tput Configurat	tion bits ⁽¹⁾			
	<u>Capture mode</u> Unused						
	<u>Compare mod</u> Unused	<u>e:</u>					
	If CCPxM<3:2	> <u>= 00, 01, 10:</u>					
	xx = PxA assi	gned as Capture/C	Compare input;	PxB, PxC, PxD as	ssigned as port p	pins	
	If CCPxM<3:2: 00 = Single ou 01 = Full-Bridg 10 = Half-Bridg 11 = Full-Bridg	> = <u>11</u> : tput; PxA modulat le output forward; ge output; PxA, Px le output reverse;	ted; PxB, PxC, PxD modulate B modulated w PxB modulate	PxD assigned as d; PxA active; PxE ith dead-band con d; PxC active; PxA	port pins , PxC inactive irol; PxC, PxD as , PxD inactive	signed as port p	ins
bit 5-4	DCxB<1:0>: F	WM Duty Cycle L	east Significar	nt bits			
	<u>Capture mode</u> Unused	<u>:</u>					
	<u>Compare mod</u> Unused	<u>e:</u>					
	<u>PWM mode:</u> These bits are	the two I Sbs of the	he PWM duty (cycle. The eight M	Sbs are found in	CCPRxI	
bit 3-0	CCPxM<3:0>:	ECCPx Mode Se	lect bits	syste. The eight m		COLLUZ.	
	0000 =Capture	e/Compare/PWM	off (resets EC	CPx module)			
	0001 =Reserv	ed					
	0010 =Compa	re mode: toggle o	utput on match	ו			
	0011 =Reserv	ed					
	0100 =Capture	e mode: everv fall	ina edae				
	0101 =Capture	e mode: every risi	ng edge				
	0110 =Capture	e mode: every 4th	rising edge				
	0111 =Capture	e mode: every 16	h rising edge				
	1000 =Compa 1001 =Compa 1010 =Compa 1011 =Compa modu	re mode: initialize re mode: initialize re mode: generat re mode: Special ile is enabled) ⁽¹⁾	ECCPx pin lo ECCPx pin hi e software inte Event Trigger (w; set output on co gh; clear output or rrupt only; ECCPx (ECCPx resets Tin	ompare match (so compare match pin reverts to I/C ner, sets CCPxIF	et CCPxIF) (set CCPxIF)) state bit, starts A/D ce	onversion if A/D
	<u>CCP Modules</u> 11xx =PWM n	<u>only:</u> node					
	ECCP Module	<u>s only:</u>					
	1100 = PWM n	node: PxA, PxC a	ctive-high; PxE	3, PxD active-high			
	1101 = PWM n	node: PxA, PxC a	ctive-high; PxE	3, PxD active-low			
	1110 = PWM n	node: PxA, PxC a	ctive-low; PxB	PxD active-high			

- 1111 =PWM mode: PxA, PxC active-low; PxB, PxD active-low
- **Note 1:** These bits are not implemented on CCP<4:3>.

25.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

25.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

25.6.7.2 SSPxOV Status Flag

In receive operation, the SSPxOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

25.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). 25.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all 8 bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the Master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxUF, clears BF.
- Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the Slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

NOTES:

26.2 Clock Accuracy with Asynchronous Operation

Г

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2** "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 26.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

REGISTER 26-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unc	hanged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set	t	'0' = Bit is clea	red				
bit 7	CSRC: Clock S	Source Select bit					
	Asynchronous	mode:					
	Don't care	ada:					
	1 = Master m	<u>ioue</u> . Iode (clock gene	rated internally	from BRG)			
	0 = Slave mo	de (clock from e	xternal source)				
bit 6	TX9: 9-bit Tran	smit Enable bit					
	1 = Selects 9	-bit transmission	I				
	0 = Selects 8	-bit transmission	I				
bit 5	TXEN: Transm	it Enable bit ⁽¹⁾					
	1 = Transmit e	enabled					
bit 4		uisableu					
DIL 4	1 = Synchrony	nus mode	JIL				
	0 = Asynchror	nous mode					
bit 3	SENDB: Send	Break Characte	r bit				
	Asynchronous	mode:					
	1 = Send Syn	c Break on next	transmission (c	leared by hardwa	are upon completion	on)	
	0 = Sync Brea	ak transmission (hode:	completed				
	Don't care	<u>1000</u> .					
bit 2	BRGH: High B	aud Rate Select	bit				
	Asynchronous	<u>mode</u> :					
	1 = High spee	d					
	0 = Low spee	d					
	Unused in this	mode					
bit 1	TRMT: Transm	it Shift Register :	Status bit				
~	1 = TSR empt	ty					
	0 = TSR full	-					
bit 0	TX9D: Ninth bi	t of Transmit Dat	ta				
	Can be addres	s/data bit or a pa	arity bit.				
Note 1: S	SREN/CREN overrid	les TXEN in Syn	c mode.				

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fos	c = 8.00	0 MHz	Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	_	_	_	_	_	_	_	300	0.16	207
1200	—	_	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	—
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	_	—
115.2k	—	—	—	—	—	—	115.2k	0.00	1	—	—	—

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Foso	: = 32.00	0 MHz	Fosc	= 20.00	0 MHz	Foso	: = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fos	c = 8.00	0 MHz	Fos	c = 4.00	0 MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_		—	_	_	115.2k	0.00	1	—	_	_

26.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

26.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 26-7), and asynchronously if the device is in Sleep mode (Figure 26-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

26.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

 Technical Publications Manager Reader Response 	Total Pages Sent
om: Name	
Company	
Address	
City / State / ZIP / Country	
Telephone: ()	FAX: ()
plication (optional):	
ould you like a reply?YN	
vice: PIC16(L)F1826/27	Literature Number: DS41391D
lestions:	
What are the best features of this document?	
How does this document meet your hardware and so	oftware development needs?
Do you find the organization of this document easy t	o follow? If not, why?
What additions to the document do you think would o	enhance the structure and subject?
What deletions from the document could be made w	ithout affecting the overall usefulness?
Is there any incorrect or misleading information (what	it and where)?
How would you improve this decument?	
How would you improve this document?	