

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1827t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 9											
48Ch —	—	Unimplement	ted							-	—
49Fh											
Bank 1	0	1								-	-
50Ch	—	Unimplement	ted							—	—
51Fh											
Bank 1	1										_
58Ch	—	Unimplement	ted							—	—
 59Fh											
Bank 1	2										
60Ch	—	Unimplement	ted							—	—
 61Fh											
Bank 1	3										
68Ch	—	Unimplement	ted							—	—
 69Fh											
Bank 14											
70Ch	—	Unimplement	ted							—	—
 71Fh											
Bank 15											
78Ch	—	Unimplement	ted							—	—
 79Fh											
Bank 1	6										
80Ch	—	Unimplement	ted							—	—
 86Fh											
Bank 1	7									•	•
88Ch	—	Unimplement	ted							—	—
8EFh											
Bank 1	8	•								•	•
90Ch	—	Unimplement	ted							_	—
 96Fh											
Bank 1	9									•	•
98Ch	—	Unimplement	ted							—	—
9EFh											
Bank 2	0										
A0Ch	—	Unimplement	ted							_	_
 A6Fh											
Bank 2	1										
A8Ch	—	Unimplement	ted							_	_
 AEFh											
Bank 2	2										
B0Ch	_	Unimplement	ted							_	_
 B6Fh											
Lonondi				lananda an aa	adition – uni			J			

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1827 only.

3.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 7 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	_			TUN	<5:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-6	Unimplemented: Read as '0'										
bit 5-0	TUN<5:0>: F	Frequency Tunir	ng bits								
	011111 = N	laximum freque	ncy								
	011110 =										
	•										
	•										
	•										
	000001 =										
	000000 = 0	scillator module	e is running at	the factory-cali	brated frequen	су.					
	111111 =										
	•										
	•										
	•										
	100000 = N	linimum frequer	су								

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN	IRCF3	IRCF2	IRCF1	IRCF0		SCS1	SCS0	65
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	66
OSCTUNE	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	67
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE		_	CCP2IE ⁽¹⁾	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_		CCP2IF ⁽¹⁾	97
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC		TMR10N	187

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16(L)F1827 only.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8		_	FCMEN	IESO	CLKOUTEN	BOREN1	BOREN0	CPD	50
	7:0	CP	MCLRE	PWRTE	WDTE1	WDTE0	FOSC2	FOSC1	FOSC0	50

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by clock sources.

FIGURE	IGURE 8-2: INTERRUPT LATENCY										
OSC1				MM							
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4			
CLKOUT			Interru during	pt Sampled Q1							
Interrupt											
GIE											
PC	PC-1	PC	PC	+1	0004h	0005h					
Execute	1 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)					
Interrupt											
GIE											
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h					
Execute-	2 Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)					
Interrupt											
GIE											
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h				
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)			
Interrupt											
GIE											
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h			
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)			

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash Program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Word 2.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be read
	and saved in RAM prior to the erase.

The number of data write latches may not be equivalent to the number of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 11-1 for details.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/ Boundary	Number of Write Latches/ Boundary		
PIC16(L)F1826/27	32 words,	32 words,		
	EEADRL<4:0>	EEADRL<4:0>		
	= 00000	= 00000		

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimplem	ented bit, read a	as '0'	
u = Bit is uncha	nged	x = Bit is unkn	own	-n/n = Value at	POR and BOR	Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	RXDTSEL: Pir 0 = RX/DT fur 1 = RX/DT fur	n Selection bit nction is on RB nction is on RB2	1				
bit 6 SDO1SEL: Pin Selection bit 0 = SDO1 function is on RB2 1 = SDO1 function is on RA6							
bit 5	SS1SEL: Pin S 0 = SS1 funct 1 = SS1 funct	Selection bit ion is on RB5 ion is on RA5					
bit 4	P2BSEL: Pin 3 0 = P2B funct 1 = P2B funct	Selection bit ion is on RB7 ion is on RA6					
bit 3	CCP2SEL: Pir 0 = CCP2/P2 1 = CCP2/P2	n Selection bit A function is on A function is on	RB6 RA7				
bit 2	P1DSEL: Pin 3 0 = P1D funct 1 = P1D funct	Selection bit tion is on RB7 tion is on RA6					
bit 1	P1CSEL: Pin 3 0 = P1C funct 1 = P1C funct	Selection bit tion is on RB6 tion is on RA7					
bit 0	CCP1SEL: Pir 0 = CCP1/P1. 1 = CCP1/P1.	n Selection bit A function is on A function is on	RB3 RB0				

REGISTER 12-1: APFCON0: ALTERNATE PIN FUNCTION CONTROL REGISTER 0

Note 1: PIC16(L)F1827 only.

REGISTER 12-2: APFCON1: ALTERNATE PIN FUNCTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0			
	—	—	_		—	—	TXCKSEL			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value a	t POR and BOR	Value at all othe	er Resets			
'1' = Bit is set		'0' = Bit is clea	red							
bit 7-1	Unimplement	ed: Read as '0'								
bit 0	TXCKSEL: Pir	n Selection bit								
	0 = TX/CK fu	nction is on RB2	2							
1 = TX/CK function is on RB5										

NOTES:

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 18-1: SRCLK FREQUENCY TABLE

REGISTER 18-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	S = Bit is set only

bit 7	SRLEN: SR Latch Enable bit 1 = SR Latch is enabled 0 = SR Latch is disabled
bit 6-4	SRCLK<2:0>: SR Latch Clock Divider bits 000 = Generates a 1 Fosc wide pulse every 4th Fosc cycle clock 001 = Generates a 1 Fosc wide pulse every 8th Fosc cycle clock 010 = Generates a 1 Fosc wide pulse every 16th Fosc cycle clock 011 = Generates a 1 Fosc wide pulse every 32nd Fosc cycle clock 100 = Generates a 1 Fosc wide pulse every 64th Fosc cycle clock 101 = Generates a 1 Fosc wide pulse every 128th Fosc cycle clock 110 = Generates a 1 Fosc wide pulse every 256th Fosc cycle clock 111 = Generates a 1 Fosc wide pulse every 512th Fosc cycle clock
bit 3	SRQEN: SR Latch Q Output Enable bit <u>If SRLEN = 1</u> : 1 = Q is present on the SRQ pin 0 = External Q output is disabled <u>If SRLEN = 0</u> : SR Latch is disabled
bit 2	SRNQEN: SR Latch Q Output Enable bit <u>If SRLEN = 1</u> : 1 = Q is present on the SRnQ pin 0 = External Q output is disabled <u>If SRLEN = 0</u> : SR Latch is disabled
bit 1	 SRPS: Pulse Set Input of the SR Latch bit⁽¹⁾ 1 = Pulse set input for 1 Q-clock period 0 = No effect on set input.
bit 0	 SRPR: Pulse Reset Input of the SR Latch bit⁽¹⁾ 1 = Pulse reset input for 1 Q-clock period 0 = No effect on reset input.
Note 1: Se	t only, always reads back '0'.

NOTES:

NOTES:

FIGURE 25-9:	SPI MODE WAVEFORM	(SLAVE MODE WITH CKE = 0)

										,	
sanan SIX											
0XE = 0) (Mex. e. 6	<u>.</u> 5 1		ι ε	i	3	 			; ; ;		1 1. 1.
80%) {C%P*= 1 O%E = 0}	/ 1 2 4 4										5 5 5 5 5
Viene eo SISPASIJE Vien	1 5 1 2 2		s s ss	د ،		< ; ; ;;	ç	, , ; ;,,.,.,.,.,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,		· · · ·
\$90x		K 68.7		X 88 8	X 3:23 4	X 25. to	$X_{i} \sim x$	X 58 °	X	88.9	аранын Аралын Аралын
SES	, ; ;									1)))),	, ; ,
imperi Samupia	<pre></pre>	2022 7 			42 	- - - - - - - - - - - - - - - - - - -	ĴŊ.	dq.		{	
SSP700 Information		< < < 2	> ? ? {						· · ·	,	
2:89 SSPxSR to SSP0502	1 1 1 1	5 5 5		(s	· : :	· · · · · · · · · · · · · · · · · · ·		
Wite Colleger											
066600000366668											

FIGURE 25-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SSx Not Opilonal				· ·			
SCKx (CKP = <u>0</u> CKE = 1)							
SCKx (CKP = 1 CKE = 1)							
Write to SSPxBUF		1 I 1 I 1 I 1 I 1 I	1 1 1 1		1 1 1 1	1 1 1 1	
SDOx —	bit 7	bit 6	bit 5 bit 4	bit 3	bit 2 bi	t 1 bit 0	
SDIx	bit 7						
Input Sample	1	1	<u>†</u> †	1	<u> </u>	<u> </u>	1 1 1 1 1
SSPxIF Interrupt Flag		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1		1
SSPxSR to SSPxBUF		1 I 1 I 1 I	1 1 1 1	1 1 1 1 1 1 1 1	1 1 1	1 1 1	ı
Write Collision dataction software							ı

25.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I²C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCLx)
- Serial Data (SDAx)

Figure 25-11 shows the block diagram of the MSSPx module when operating in I^2C Mode.

Both the SCLx and SDAx connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 25-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDAx line while the SCLx line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 25-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDAx line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCLx line is held low. Transitions that occur while the SCLx line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overrightarrow{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDAx line while the SCLx line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

25.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from low level to high level.
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user releases SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 25-35). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 25-36.

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 25-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

R/W-0/	/0 R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is u	unchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7	GCEN: Gene 1 = Enable in 0 = General c	ral Call Enable terrupt when a call address dis	bit (in I ² C Sla general call a abled	ive mode only) ddress (0x00 d	or 00h) is receiv	ed in the SSP>	SR
bit 6	ACKSTAT: Ad 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C eceived ved	mode only)			
bit 5	ACKDT: Ackr In Receive me Value transmi 1 = Not Ackno 0 = Acknowle	nowledge Data ode: itted when the owledge odge	bit (in I ² C mo	de only) an Acknowledg	le sequence at t	the end of a re	ceive
bit 4	ACKEN: Acku In Master Reg 1 = Initiate A Automati 0 = Acknowle	nowledge Sequ ceive mode: Acknowledge s cally cleared b edge sequence	uence Enable sequence on y hardware. e Idle	bit (in I ² C Mas SDAx and S	ter mode only) CLx pins, and	transmit ACI	KDT data bit.
bit 3	RCEN: Recei 1 = Enables F 0 = Receive I	ve Enable bit (Receive mode dle	in I ² C Master for I ² C	mode only)			
bit 2	PEN: Stop Co <u>SCKx Releas</u> 1 = Initiate Sto 0 = Stop cond	ondition Enable <u>e Control:</u> op condition or dition Idle	e bit (in I ² C Ma n SDAx and Se	aster mode only CLx pins. Auto	y) matically cleare	d by hardware	
bit 1	RSEN: Repeated 1 = Initiate R 0 = Repeated	ated Start Con epeated Start (d Start conditio	dition Enabled condition on S n Idle	bit (in I ² C Mas DAx and SCLx	ster mode only) c pins. Automati	cally cleared b	y hardware.
bit 0	SEN: Start Co In Master mod 1 = Initiate St 0 = Start cond	ondition Enable <u>de:</u> art condition or dition Idle	ed bit (in I ² C M או SDAx and S	laster mode or CLx pins. Auto	nly) matically cleare	d by hardware	
	In Slave mode 1 = Clock stree 0 = Clock stree	<u>e:</u> etching is enab etching is disab	led for both sla led	ave transmit ar	nd slave receive	e (stretch enabl	ed)
Note 1	For hits ACKEN B	CEN PEN R	SEN SEN. Ift	he I ² C module	is not in the Idl	a moda this hi	t may not be

REGISTER 25-3: SSPxCON2: SSPx CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	—		—	—	_		TXCKSEL	119
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG			EU	SART Recei	ve Data Regis	ter			290*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL				BRG	<7:0>				297*
SPBRGH		BRG<15:8>				297*			
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Asynchronous Reception.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

REGISTER 27-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0
bit 7		·					bit 0
Legend:							
R = Readable b	it	W = Writable b	oit	U = Unimplem	nented bit, read a	as 'O'	
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
<u> </u>							,
bit 7-4	Unimplement	ted: Read as '0'					
bit 3-0	CPSCH<3:0>	: Capacitive Ser	sing Channel	Select bits			
	If CPSON = 0	:	-				
	These bit	ts are ignored. N	o channel is s	elected.			
	<u>If CPSON = 1</u>	:					
	0000 =	channel 0, (CPS	S0)				
	0001 =	channel 1, (CPS	S1)				
	0010 =	channel 2, (CPS	S2)				
	0011 =	channel 3, (CPS	S3)				
	0100 =	channel 4, (CPS	S4)				
	0101 =	channel 5, (CPS	55)				
	0110 =	channel 6, (CP	56)				
	0111 =	channel 7, (CPS	57)				
	1000 =	channel 8, (CPS	58) 20)				
	1001 =	channel 9, (CPS	59) 2610)				
	1010 -	channel 10, (CF	-310) 0911)				
	1100 =	Reserved Don	ot use				
	1101 =	Reserved Don	iot use.				
	1110 =	Reserved Don	iot use				
	1111 =	Reserved. Do n	iot use.				

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	-	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	_	128
CPSCON0	CPSON	—	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	318
CPSCON1	_	—	_	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	319
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	185
TxCON	-	TxOUTPS3	TxOUTPS2	TxOUTPS1	TxOUTPS0	TMRxON	TxCKPS1	TxCKPS0	185
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the capacitive sensing module.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	0 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a two-cycle instruc- tion. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set					
Syntax:	[label]BTFSS f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$					
Operation:	skip if (f) = 1					
Status Affected:	None					
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.					

BRW	Relative Branch with W					
Syntax:	[<i>label</i>] BRW					
Operands:	None					
Operation:	$(PC) + (W) \to PC$					
Status Affected:	None					
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a two-cycle instruc- tion.					

BSF	Bit Set f			
Syntax:	[<i>label</i>]BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Description:	Bit 'b' in register 'f' is set.			

30.1 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended)

r									
PIC16LF1826/27			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
PIC16F1826/27			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial $-40^{\circ}C \le Ta \le +125^{\circ}C$ for extended						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC16LF1826/27	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (NOTE 2)		
D001		PIC16F1826/27	1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (NOTE 2)		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC16LF1826/27	1.5	—	—	V	Device in Sleep mode		
D002*		PIC16F1826/27	1.7	_	_	V	Device in Sleep mode		
	VPOR*	Power-on Reset Release Voltage	—	1.6	-	V			
	VPORR*	Power-on Reset Rearm Voltage							
		PIC16LF1826/27	—	0.8	_	V	Device in Sleep mode		
		PIC16F1826/27	—	1.7	—	V	Device in Sleep mode		
D003	VADFVR	Fixed Voltage Reference Voltage for	-8	_	6	%	1.024V, VDD \geq 2.5V		
		ADC	-8	—	6		$2.048V, VDD \ge 2.5V$		
			-8		6		$4.096V, VDD \ge 4.75$		
D003A	VCDAFVR	Fixed Voltage Reference Voltage for	-11		7	%	$1.024V, VDD \ge 2.5V$		
			-11		7		$4.096V, VDD \ge 4.75$		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	-	—	V/ms	See Section 7.1 "Power-on Reset (POR)" for details.		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

*

TABLE 30-8: PIC16(L)F1826/27 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at +25°C								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	_		10	bit		
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error			±2.5	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V	
AD06	Vref	Reference Voltage ⁽³⁾	_		Vdd	V	VREF = (VREF+ minus VREF-) (NOTE 5)	
AD07	VAIN	Full-Scale Range	_		VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: FVR voltage selected must be 2.048V or 4.096V.

TABLE 30-9: PIC16(L)F1826/27 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.5	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11	—	Tad	Set GO/DONE bit to conversion complete
AD132*	TACQ	Acquisition Time	_	5.0	_	μS	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.