

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1826-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE	3-6: SI	PECIAL F	UNCTION	I REGISTE	ER SUMN	IARY (CC	NTINUE	D)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	3										
B8Ch	—	Unimplement	ted							—	-
 BEFh											
Bank 24	4									•	•
C0Ch	—	Unimplement	ted							_	_
 C6Fh											
Bank 2	5										
C8Ch	—	Unimplement	ted							—	-
 CEFh											
Bank 2	6									•	•
D0Ch	—	Unimplement	ted							-	-
D6Fh											
Bank 2	7										
D8Ch	—	Unimplement	ted							-	-
DEFh											
Bank 2	8										
E0Ch	—	Unimplement	ted							_	-
E6Fh											
Bank 2	9										
E8Ch	—	Unimplement	ted							-	-
EEFh											
Bank 3	0										
F0Ch	-	Unimplement	ted							_	-
F6Fh											

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1827 only.

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

4.5 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Word 1
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Word 1.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch, which may
	occur from Two-Speed Start-up or
	Fail-Safe Clock Monitor, does not update
	the SCS bits of the OSCCON register. The
	user can monitor the OSTS bit of the
	OSCSTAT register to determine the current
	system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the Timer1 Oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 Oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1CON register. See **Section 21.0 "Timer1 Module with Gate Control"** for more information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the Timer1 Oscillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

12.3 PORTB and TRISB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-9). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-8) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.3.1 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference **Section 13.0 "Interrupt-On-Change"** for more information.

12.3.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-11). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION register.

12.3.3 ANSELB REGISTER

The ANSELB register (Register 12-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no affect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

16.3 ADC Register Definitions

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6-2	CHS<4:0>: Analog Channel Select bits
	00000 = ANO
	00001 = AN1
	00010 = AN2
	00011 = AN3
	00100 = AN4
	00101 = AN5
	00110 = AN6
	00111 = AN7
	01000 = AN8
	01001 = AN9
	01010 = AN10
	01011 = AN11
	11101 = Temperature Indicator ⁽³⁾
	$11110 = DAC \text{ output}^{(1)}$
	11111 = FVR (Fixed Voltage Reference) Buffer 1 Output ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
	This bit is automatically cleared by hardware when the A/D conversion has completed.
	0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current
Note 1	See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information.
2	See Section 14.0 "Fixed Voltage Reference (FVR)" for more information.
-	

3: See Section 15.0 "Temperature Indicator Module" for more information.

19.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 19-1:

SINGLE COMPARATOR

20.2 Option and Timer0 Control Register

REGISTER 20-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	1 R/V	V-1/1	R/W-1/1	R/W-1/1	R/W-1/	1 R/V	N-1/1	R/W-1/1			
WPUEN	INTEDO	G TMF	ROCS	TMR0SE	PSA		PS<	<2:0>				
bit 7									bit 0			
Legend:												
R = Readable	bit	W = V	Vritable bit		U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Re							er Resets					
'1' = Bit is set		'0' = E	Bit is cleare	d								
bit 7	WPUEN: 1 = All we 0 = Weak	Weak Pull- ak pull-ups pull-ups ar	up Enable are disabl e enabled	bit ed (except by individua	MCLR, if it is al WPUx latc	enabled) h values						
bit 6	INTEDG: 1 = Interru 0 = Interru	Interrupt E upt on rising upt on fallin	dge Select g edge of II ig edge of I	bit NT pin NT pin								
bit 5	TMR0CS: 1 = Transi 0 = Interna	Timer0 Cle tion on T00 al instructio	ock Source CKI pin on cycle clo	e Select bit ock (Fosc/4)							
bit 4	TMR0SE: 1 = Incren 0 = Incren	Timer0 So nent on hig nent on low	ource Edge h-to-low tra v-to-high tra	Select bit ansition on ansition on	T0CKI pin T0CKI pin							
bit 3	PSA: Pres	scaler Assi	gnment bit									
	1 = Presca 0 = Presca	aler is not a aler is assi	assigned to gned to the	the Timer Timer0 mo) module odule							
bit 2-0	PS<2:0>:	Prescaler	Rate Selec	t bits								
		Bit Value	Timer0 Rat	e								
		000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	-								
TABLE 20-1:	SUMMA	ARY OF R	REGISTER	RS ASSO	CIATED WI	TH TIMERO)					
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register			

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	318
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
TMR0	Timer0 Mo	odule Regis	ster						173*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

24.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

24.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPRxL	Capture/Compare/PWM Register x Low Byte (LSB)								
CCPRxH	<pre>cH Capture/Compare/PWM Register x High Byte (MSB)</pre>								
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	170
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	—	_	C1NCH1	C1NCH0	171
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	170
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	—	_	C2NCH1	C2NCH0	171
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	_	CCP2IE ⁽²⁾	88
PIE3 ⁽²⁾	—	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF ⁽²⁾	92
PIR3 ⁽²⁾	—	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	93
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	-	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS1	T1GSS0	186
TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit TMR1 F	Register			177*
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit TMR1 R	legister			177*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by Capture mode.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 24-3 shows a typical waveform of the PWM signal.

24.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for CCP modules ECCP1, ECCP2, CCP3 and CCP4.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PRx registers
- TxCON registers
- · CCPRxL registers
- · CCPxCON registers

Figure 24-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 24-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7						11	bit 0
							r
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	SPEN: Serial	Port Enable bit	t				
	1 = Serial po	rt enabled (con	figures RX/D ⁻	T and TX/CK p	oins as serial poi	rt pins)	
bit 6	0 = Senai po	ceive Enable b	it				
bit 0	1 = Selects 9	-bit reception	11				
	0 = Selects 8	-bit reception					
bit 5	SREN: Single	e Receive Enab	le bit				
	<u>Asynchronous</u>	<u>s mode</u> :					
	Don't care						
	Synchronous	mode – Maste	<u>r</u> :				
	1 = Enables	single receive					
	This bit is clea	ared after receive	otion is comple	ete.			
	Synchronous	mode – Slave					
	Don't care						
bit 4	CREN: Contin	nuous Receive	Enable bit				
	Asynchronous	<u>s mode</u> :					
	1 = Enables	receiver					
	0 = Disables	mode.					
	1 = Enables	continuous rece	eive until enat	ole bit CREN is	s cleared (CREN	l overrides SRE	EN)
	0 = Disables	continuous rec	eive		Υ.		,
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronous	<u>s mode 9-bit (R</u>	<u>X9 = 1)</u> :				
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	Iffer when RSR	<8> is set
	0 = Disables	address detect	(100, all bytes)	are received a	ind ninth bit can	be used as par	ity bit
	Don't care		<u> </u>				
bit 2	FERR: Frami	ng Error bit					
	1 = Framing	error (can be u	pdated by rea	iding RCREG	register and rec	eive next valid b	oyte)
	0 = No framin	ng error					
bit 1	OERR: Overr	un Error bit					
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	Iring bit CREN)		
bit 0	RX9D: Ninth	bit of Received	Data				
	This can be a	ddress/data bit	or a parity bit	and must be	calculated by us	er firmware.	

REGISTER 26-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1826/27 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 7.3 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

NOTES:

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations
OPCODE d f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register address
Bit-oriented file register operations
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register address
Literal and control operations
General
OPCODE K (Interai)
k = 8-bit immediate value
CALL and GOTO instructions only
13 11 10 0
OPCODE k (literal)
k = 11-bit immediate value
MOVLP instruction only
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
MOVLB instruction only
13 5 4 0
OPCODE k (literal)
k = 5-bit immediate value
BRA instruction only
k = 9-bit immediate value
FSR Offset instructions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
OPCODE h k (literal)
n = appropriate FSR k = 6-bit immediate value
FSR Increment instructions
13 3 2 1 0 OPCODE n m (mode)
n = appropriate FSR m = 2-bit mode value
OPCODE only
UFCODE

Mnen	nonic,	Description	0		14-Bit	Opcode)	Status	Natas
Oper	rands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f. d	Increment f	1	00	1010	dfff	ffff	z	2
IORWE	f. d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVE	fd	Move f	1	00	1000	dfff	ffff	7	2
MOVWE	., ⊆ f	Move W to f	1	00	0000	1fff	ffff	-	2
RIF	fd	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	2
SUBWE	f d	Subtract W from f	1	00	0010	dfff	ffff		2
SUBWEB	fd	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C DC Z	2
SWAPE	f d	Swan nibbles in f	1	00	1110	dfff	ffff	0, 00, 2	2
XORWE	f d	Exclusive OR W with f	1	00	0110	dfff	ffff	7	2
XOIT	i, u				0110	uIII	LLLL	2	2
	fd	Decrement f Skin if 0			1011	4fff	<i>f f f f f f f f f f </i>		1 2
DECFSZ	r, u f d	Increment f. Skip if 0	1(2)	00	1111	JEEE			1, 2
INCFSZ	1, u		1(2)	00		aiii	IIII		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
	1	BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	NS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
L			ı						

TABLE 29-3: PIC16(L)F1826/27 ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

No Operation

ΜΟΥΨΙ	Move W to INDFn					
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]					
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31					
Operation:	$\label{eq:W} \begin{split} W &\rightarrow INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (\text{preincrement}) \\ \bullet \ FSR - 1 \ (\text{predecrement}) \\ \bullet \ FSR + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be either:} \\ \bullet \ FSR + 1 \ (\text{all increments}) \\ \bullet \ FSR - 1 \ (\text{all decrements}) \\ \text{Unchanged} \end{split}$					
Status Affected:	None					

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
Syntax:	

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W					
Syntax:	[label] OPTION					
Operands:	None					
Operation:	$(W) \rightarrow OPTION_REG$					
Status Affected:	None					
Description:	Move data from W register to OPTION_REG register.					
Words:	1					
Cycles:	1					
Example:	OPTION					
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F					

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware

FIGURE 30-2: PIC16LF1826/27 VOLTAGE FREQUENCY GRAPH, -40°C < TA <+125°C

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down) (Continued)

PIC16LF1	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $										
PIC16F18	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				n erwise stated) °C for industrial 5°C for extended					
Param	Device Characteristics	Min.	Typt	Max.	Max.	Units		Conditions			
NO.				+85°C	+125°C		VDD	Note			
	Power-down Base Current	(IPD) ⁽²⁾	1	1	1	1	1				
D026A*		_	250	—	—	μA	1.8	A/D Current (Note 1, Note 3),			
		-	250	—	_	μA	3.0	conversion in progress			
D026A*			280	—	—	μA	1.8	A/D Current (Note 1, Note 3),			
		_	280			μΑ	3.0				
		—	280	_	-	μΑ	5.0				
D027			3.5	6	8	μΑ	1.8	Cap Sense Low Power Oscillator mode (Note 1)			
D027		_	1	10	14	μΑ	3.0				
D027			4.3	30	38	μΑ	1.8	Oscillator mode (Note 1)			
			0.0	39	42	μΑ	5.0				
D027A		_	0.3	42	43	μΑ	1.8	Can Sense Medium Power			
DUZTA			4.2	12	10	μΑ	3.0	Oscillator mode (Note 1)			
D027A			74	38	40	μΑ	1.8	Can Sense Medium Power			
DOLIN			97	42	43	μΑ	3.0	Oscillator mode (Note 1)			
			10.4	46	48	μΑ	5.0	-			
D027B		_	6	10	15	μA	1.8	Cap Sense High Power			
-		_	10	14	20	μA	3.0	Oscillator mode (Note 1)			
D027B		_	17	44	50	μA	1.8	Cap Sense High Power			
		_	41	68	80	μA	3.0	Oscillator mode (Note 1)			
		_	50	78	90	μA	5.0	1			
D028		_	6.9	11	15	μA	1.8	Comparator Current, Low Power			
			7.0	13	16	μA	3.0	mode, one comparator enabled (Note 1)			
D028			24	45	60	μA	1.8	Comparator Current, Low Power			
		_	24.5	60	70	μA	3.0	mode, one comparator enabled			
		—	25	65	75	μA	5.0				
D028A		_	7.0	12	16	μA	1.8	Comparator Current, Low Power			
		_	7.2	14	17	μΑ	3.0	(Note 1)			
D028A		_	24	45	60	μA	1.8	Comparator Current, Low Power			
		_	24.5	60	70	μA	3.0	mode, two comparators enabled			
		-	25	65	75	μA	5.0				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.

*

TABLE 30-2: OSCILLATOR PARAMETERS

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC	±2%	_	16.0	—	MHz	$0^{\circ}C \leq TA \leq +60^{\circ}C, \ V\text{DD} \geq 2.5V$	
		Frequency ⁽²⁾	±3%	—	16.0	_	MHz	$60^{\circ}C \leq TA \leq \textbf{+85}^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±5%	—	16.0	_	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	
OS08A	OS08A MFosc	Internal Calibrated MFINTOSC	±2%	—	500	_	kHz	$0^{\circ}C \leq TA \leq +60^{\circ}C, \ V\text{DD} \geq 2.5V$	
	Frequency ⁽²⁾	±3%	_	500		kHz	$60^{\circ}C \leq TA \leq \textbf{+85^{\circ}C}, V\text{DD} \geq 2.5V$		
			±5%	_	500	-	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	
OS09	LFosc	Internal LFINTOSC Frequency	_	_	31	_	kHz	$-40^\circ C \le T A \le +125^\circ C$	
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	—	_	3.2	8	μS		
		MFINTOSC Wake-up from Sleep Start-up Time	_	_	24	35	μS		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

3: By design.

TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.