

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1826-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP

	BANK 0	•	BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh		30Dh	_	38Dh	_
00Eh	_	08Eh	_	10Eh	_	18Eh	_	20Eh	_	28Eh	_	30Eh	—	38Eh	_
00Fh	_	08Fh	_	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	—	38Fh	_
010h		090h	_	110h	—	190h	_	210h	_	290h	—	310h		390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L ⁽¹⁾	391h	—
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H ⁽¹⁾	392h	_
013h	PIR3 ⁽¹⁾	093h	PIE3 ⁽¹⁾	113h	CM2CON0	193h	EEDATL	213h	SSP1MASK	293h	CCP1CON	313h	CCP3CON ⁽¹⁾	393h	_
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	—	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	_	298h	CCPR2L ⁽¹⁾	318h	CCPR4L ⁽¹⁾	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H ⁽¹⁾	319h	CCPR4H ⁽¹⁾	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON ⁽¹⁾	31Ah	CCP4CON ⁽¹⁾	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MASK ⁽¹⁾	29Bh	PWM2CON ⁽¹⁾	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS ⁽¹⁾	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON ⁽¹⁾	29Dh	PSTR2CON ⁽¹⁾	31Dh	_	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS ⁽¹⁾	31Eh	—	39Eh	MDCARL
01Fh	CPSCON1	09Fh	_	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h	General	2A0h		320h		3A0h	
			General		General		General		Purpose						
			Purpose		Purpose		Purpose		A8 Bytes ⁽¹⁾		Unimplemented		Unimplemented		Unimplemented
	General		Register		Register		Register		+0 Dytes		Read as '0'		Read as '0'		Read as '0'
	Purpose		80 Bytes		80 Bytes		80 Bytes ⁽¹⁾		Unimplemented						
06Fh	Register	0FFh		16Fh		1FFh		26Fh	Read as '0'	2FFh		36Fh		3EFh	
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1827.

TABLE 3-4:PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	Bank 31	
F80h	Core Registers (Table 3-2)	
F8Bh F8Ch	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	_	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
FF0h FFFh	Common RAM (Accesses 70h – 7Fh)	

= Unimplemented data memory locations, read as '0',

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6	nk 6										
30Ch	JCh – Unimplemented										—
30Dh	—	Unimplement	ed							—	—
30Eh	_	Unimplement	ed							—	—
30Fh	_	Unimplement	ed							—	—
310h	—	Unimplement	ed							—	—
311h	CCPR3L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (MSB))					xxxx xxxx	uuuu uuuu
313h	CCP3CON ⁽¹⁾	—	—	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000
314h	—	Unimplement	ed							_	—
315h	—	Unimplement	ed							_	_
316h	—	Unimplement	ed							_	_
317h	—	Unimplement	ed							_	_
318h	CCPR4L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (LSB)						xxxx xxxx	uuuu uuuu
319h	CCPR4H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (MSB))					xxxx xxxx	uuuu uuuu
31Ah	CCP4CON ⁽¹⁾	_	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000	00 0000
31Bh	—	Unimplement	ed	•	•	•	•	•	•	_	_
31Ch	—	Unimplement	ed							_	_
31Dh	—	Unimplement	ed							_	_
31Eh	—	Unimplement	ed							_	_
31Fh	—	Unimplement	ed							_	_
Bank 7											
38Ch	_	Unimplement	ed							_	_
38Dh	—	Unimplement	ed							_	_
38Eh	—	Unimplement	ed							_	_
38Fh	—	Unimplement	ed							_	_
390h	_	Unimplement	ed							_	_
391h	_	Unimplement	ed							_	_
392h	_	Unimplement	ed							_	_
393h	_	Unimplement	ed							_	_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimplement	ed							_	—
398h	_	Unimplement	ed							_	_
399h	—	Unimplement	ed							_	_
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRDC1	CLKRDC0	CLKRDIV2	CLKRDIV1	CLKRDIV0	0011 0000	0011 0000
39Bh	—	Unimplement	ed							_	—
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	_	_	_	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	—	_	—	MDMS3	MDMS2	MDMS1	MDMS0	x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL3	MDCL2	MDCL1	MDCL0	xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—	MDCH3	MDCH2	MDCH1	MDCH0	xxx- xxxx	uuu- uuuu

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.7** "Internal Oscillator **Clock Switch Timing**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running and can be utilized.

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4X PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (Default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the frequency selection is set to
	500 kHz. The user can modify the IRCF
	bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1		128
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	132
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	132
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	132
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

 TABLE 13-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by interrupt-on-change.

17.7 DAC Control Registers

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DACEN	DACLPS	DACOE		DACP	SS<1:0>		DACNSS
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpleme	ented bit, read as	0'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	DACEN: DAC	Enable bit					
	1 = DAC is en	abled					
	0 = DAC is dis	sabled					
bit 6	DACLPS: DAC	Low-Power Volt	age State Sele	ct bit			
	1 = DAC Posi	tive reference so	urce selected				
5 H F	0 = DAC Nega						
DIT 5	1 = DAC volta	voltage Output E	nable bit				
	0 = DAC volta	ige level is discor	nected from th	e DACOUT pin			
bit 4	Unimplemente	ed: Read as '0'					
bit 3-2	DACPSS<1:0>	. DAC Positive S	ource Select b	its			
	00 = VDD						
	01 = VREF+ pin						
	10 = FVR Buffer2 output						
5 14 <i>d</i>		a, do not use					
Dit 1	Unimplemente	ed: Read as '0'					
bit 0	DACNSS: DAC	C Negative Source	e Select bits				
	$\perp = VREF-$ 0 = VSS						
	0 00						

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	138
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS1	DACPSS0	_	DACNSS	156
DACCON1	_	_	_	DACR4	DACR3	DACR2	DACR1	DACR0	156

Legend: — = unimplemented, read as '0'. Shaded cells are unused with the DAC module.

24.2 Compare Mode

The Compare mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, CCP3 and CCP4.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- · Set the CCPx output
- · Clear the CCPx output
- · Generate a Special Event Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 24-2 shows a simplified diagram of the Compare operation.

FIGURE 24-2: COMPARE MODE OPERATION BLOCK DIAGRAM

24.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON0 register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

24.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

24.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

24.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 24-3: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1826	ECCP1
PIC16(L)F1827	CCP4

Refer to **Section 16.2.5 "Special Event Trigger**" for more information.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

25.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I²C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCLx)
- Serial Data (SDAx)

Figure 25-11 shows the block diagram of the MSSPx module when operating in I^2C Mode.

Both the SCLx and SDAx connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 25-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDAx line while the SCLx line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 25-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDAx line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCLx line is held low. Transitions that occur while the SCLx line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overline{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDAx line while the SCLx line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

25.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high.

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 25-37). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 25-38).

FIGURE 25-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 25-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIE4 ⁽¹⁾	—	_	_	_	_	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF ⁽¹⁾	92
PIR4 ⁽¹⁾	—	—	—	_	—	—	BCL2IF	SSP2IF	94
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
SSPxADD	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	283
SSPxBUF	MSSPx Receive Buffer/Transmit Register				235*				
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	280
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	281
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	282
SSPxMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	283
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	279

TABLE 25-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C[™] OPERATION

Legend: -= unimplemented, read as '0'. Shaded cells are not used by the MSSP module in I²C[™] mode. * Page provides register information.

Note 1: PIC16(L)F1827 only.

NOTES:

26.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,			
	the corresponding ANSEL bit must be			
	cleared for the receiver to function.			

26.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

26.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

26.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG.

26.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

27.1 Analog MUX

The capacitive sensing module can monitor up to 12 inputs. The capacitive sensing inputs are defined as CPS<11:0>. To determine if a frequency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<3:0> bits of the CPSCON1 register
- · Set the corresponding ANSEL bit
- · Set the corresponding TRIS bit
- · Run the software algorithm

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

27.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSOUT bit of the CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has three different current settings as defined by CPSRNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base
- Maximize the count differential in the timer during a change in frequency

27.3 Timer resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the fixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of counts in the timer divided by the period of the fixed time base.

27.4 Fixed Time Base

To measure the frequency of the capacitive sensing oscillator, a fixed time base is required. Any timer resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note: The fixed time base can not be generated by the timer resource that the capacitive sensing oscillator is clocking.

27.4.1 TIMER0

To select Timer0 as the timer resource for the capacitive sensing module:

- Set the T0XCS bit of the CPSCON0 register
- · Clear the TMR0CS bit of the OPTION register

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.4.2 TIMER1

To select Timer1 as the timer resource for the capacitive sensing module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 gate, be used to develop the fixed time base required by the software portion of the capacitive sensing module. Refer to **Section 21.6.3 "Timer1 Gate Toggle Mode"** for additional information.

Ν

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	
CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is uncl	hanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	CPSON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is enabled 0 = Capacitive sensing module is disabled							
bit 6-4	Unimplemen	Unimplemented: Read as '0'						
bit 3-2	CPSRNG<1:(00 = Oscillato 01 = Oscillato 10 = Oscillato 11 = Oscillato	CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits 00 = Oscillator is off 01 = Oscillator is in low range. Charge/discharge current is nominally 0.1 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 1.2 μA. 11 = Oscillator is in high range. Charge/discharge current is nominally 18 μA.						
bit 1	CPSOUT: Capacitive Sensing Oscillator Status bit 1 = Oscillator is sourcing current (Current flowing out the pin) 0 = Oscillator is sinking current (Current flowing into the pin)							
bit 0	TOXCS: Timer0 External Clock Source Select bit <u>If TMR0CS = 1</u> The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 clock source is the capacitive sensing oscillator 0 = Timer0 clock source is the T0CKI pin <u>If TMR0CS = 0</u> Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4			0:				

REGISTER 27-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	0 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a two-cycle instruc- tion. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a two-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

MOVIW	Move INDFn to W [label] MOVIW ++FSRn [label] MOVIWFSRn [label] MOVIW FSRn++ [label] MOVIW FSRn [label] MOVIW k[FSRn]			
Syntax:				
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31			
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$			
Status Affected:	Z			

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

MOVLB Move literal to BSR

Syntax:	[label] MOVLB k
Operands:	$0 \le k \le 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The five-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>] MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The seven-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assem-

Operands:	$0 \leq k \leq 255$	
Operation:	$k \rightarrow (W)$	
Status Affected:	None	
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.	
Words:	1	
Cycles:	1	
Example:	MOVLW 0x5A	
	After Instruction W = 0x5A	

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction
	OPTION_REG = 0x4F
	W = 0x4F

Internal Sampling Switch (Rss) IMPEDANCE	149
Internet Address	403
Interrupt-On-Change	131
Associated Registers	133
Interrupts	81
ADC	144
Associated registers w/ Interrupts	94
Configuration Word w/ Clock Sources	67
Configuration Word w/ PORTA	124
Configuration Word w/ Reference Clock Sources	71
TMR1	181
INTOSC Specifications	355
IOCBF Register	132
IOCBN Register	132
IOCBP Register	132

L

LATA Register	
LATB Register	
Load Conditions	
LSLF	
LSRF	

Μ

Master Synchronous Serial Port. See MSSPx	
MCLR.	76
Internal	76
MDCARH Register	. 200
MDCARL Register	. 201
MDCON Register	. 198
MDSRC Register	. 199
Memory Organization	17
Data	20
Program	17
Microchip Internet Web Site	.403
Migrating from other PIC Microcontroller Devices	. 393
MOVIW	. 334
MOVLB	. 334
MOVWI	. 335
MPLAB ASM30 Assembler, Linker, Librarian	. 380
MPLAB Integrated Development Environment Software .	. 379
MPLAB PM3 Device Programmer	. 382
MPLAB REAL ICE In-Circuit Emulator System	. 381
MPLINK Object Linker/MPLIB Object Librarian	. 380
MSSPx	. 231
I ² C Mode	. 242
I ² C Mode Operation	. 244
SPI Mode	. 234
SSPxBUF Register	.237
SSPxSR Register	. 237
-	

0

OPCODE Field Descriptions	
OPTION	
OPTION_REG Register	
OSCCON Register	65
Oscillator	
Associated Registers	67
Oscillator Module	51
ECH	51
ECL	51
ECM	51
HS	51
INTOSC	51
LP	51
RC	51

ХТ	
Oscillator Parameters	355
Oscillator Specifications	354
Oscillator Start-up Timer (OST)	
Specifications	359
Oscillator Switching	
Fail-Safe Clock Monitor	63
Two-Speed Clock Start-up	61
OSCSTAT Register	
OSCTUNE Register	67

Ρ

P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/ PWM (ECCP)	212
Packaging	383
Marking	383
PDIP Details	384
PCL and PCLATH	16
PCI Register	27
PCI ATH Register	27
PCON Register	28 79
PIF1 Register	28 87
PIF2 Register	88
PIF3 Register	89
PIF4 Register	90
Pin Diagram	
PIC16F/I E1826/27 18-nin PDIP/SOIC	4
PIC16F/LE1826/27, 28-nin OEN/LIOEN	-
Pinout Descriptions	
PIC16F/I E1826/27	11
PIP1 Pogistor	28 01
PIR1 Register	20, 91
PIR2 Register	20, 92
PIRJ Register	93
	94
	120
	120
	124
	28, 29
Specifications	357
PORTA Register	122
PORTB	125
Additional Pin Functions	
Weak Pull-up	127
ANSELB Register	125
Associated Registers	129
Interrupt-on-Change	125
P1B/P1C/P1D.See Enhanced Capture/Compare/	
PWM+ (ECCP+)	125
Pin Descriptions and Diagrams	129
PORTB Register	28, 29
PORTB Register	127
Power-Down Mode (Sleep)	95
Associated Registers 9	6, 201
Power-on Reset	74
Power-up Time-out Sequence	76
Power-up Timer (PWRT)	74
Specifications	359
PR2 Register	28, 32
Precision Internal Oscillator Parameters	355
Program Memory	17
Map and Stack (PIC16F/LF1826)	18
Map and Stack (PIC16F/LF1826/27)	17, 18
Programming, Device Instructions	325
PSTRxCON Register	230
PWM (ECCP Module)	
PWM Steering	223