

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1826t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F1826/27 are described within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1826/27 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16F/LF1826	PIC16(L)F1827
ADC		٠	•
Capacitive Sensing Mod	dule	٠	•
Digital-to-Analog Conve	rter (DAC)	•	•
Digital Signal Modulator	(DSM)	•	•
EUSART		٠	•
Fixed Voltage Reference	e (FVR)	•	•
Reference Clock Module	e	•	•
SR Latch		•	•
Capture/Compare/PWM	Modules		
	ECCP1	•	•
	ECCP2		•
	CCP3		•
	CCP4		•
Comparators			
	C1	•	•
	C2	•	•
Master Synchronous Se	erial Ports		
	MSSP1	•	•
	MSSP2		•
Timers			
	Timer0	•	•
	Timer1	•	•
	Timer2	•	•
	Timer4		•
	Timer6		

7.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

7.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Word 1.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

7.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when Vdd reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Word 1. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 7-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Word 2.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 7-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Device Operation upon release of POR	Device Operation upon wake- up from Sleep	
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾		
1.0		Awake	Active	Waite for BOD ready		
10	10 X		Disabled	Waits for BOR ready		
0.1	1	X	Active	Begins in	nmediately	
01	0	Х	Disabled	Begins in	mediately	
00	Х	х	Disabled	Begins immediately		
00	-	X	Disabled	Begins immediately Begins immediately		

TABLE 7-1:BOR OPERATING MODES

Note 1: Even though this case specifically waits for the BOR, the BOR is already operating, so there is no delay in start-up.

7.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Word 1 are set to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

7.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Word 1 are set to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

7.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Word 1 are set to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

EXAMPLE 11-2: DATA EEPROM WRITE

	BANKSEL MOVLW MOVWF MOVLW MOVWF BCF BCF BSF	EECON1, EEPG EECON1, WREN	;Data Memory Address to write ;
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF BSF BCF BTFSC GOTO	55h EECON2 OAAh EECON2 EECON1, WR INTCON, GIE	; ;Write 55h ; ;Write AAh ;Set WR bit to begin write ;Enable Interrupts ;Disable writes

PIC16(L)F1826/27

EXAM	PLE 11-4:	ERASING ONI	E ROW OF PROGRAM MEMORY -
		routine assumes	-
; 1. A	valid addr	ess within the	erase block is loaded in ADDRH:ADDRL
; 2. AI	DDRH and AD	DRL are located	in shared data memory 0x70 - 0x7F (common RAM)
	BCF BANKSEL MOVF MOVWF MOVF BSF	INTCON,GIE EEADRL ADDRL,W EEADRL ADDRH,W EEADRH EECON1,EEPGD	 ; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Point to program memory
	BCF	EECON1, EEFGD	; Not configuration space
	BSF	EECON1, FREE	; Specify an erase operation
	BSF	EECON1, WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h EECON2 0AAh EECON2 EECON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; Any instructions here are ignored as processor ; halts to begin erase sequence ; Processor will stop here and wait for erase complete. ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	EECON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:	b :4		b :4		nanted bit was	d aa (0)	
R = Readable		W = Writable		•	nented bit, rea		than Decete
S = Bit can or	5	x = Bit is unk				R/Value at all o	iner Resets
'1' = Bit is set		'0' = Bit is cl€	eared	HC = Bit is cl	eared by hardv	vare	
bit 7	EEPGD: Flas	sh Program/Da	ta EEPROM M	emory Select	bit		
	1 = Accesse	s program spa	ce Flash memo	-			
		s data EEPRC	-				
bit 6		-	EEPROM or C	-			
			n, User ID and I Im or data EEP				
bit 5		Write Latches					
bit 0			<u>space)</u> OR <u>CFC</u>	SS = 0 and FF	PGD = 1 (proc	oram Flash) [.]	
		-				program memoi	v latches are
	upda	ated.				C	-
						into program m	emory latche
	and	initiates a write	e of all the data	stored in the	program memo	bry latches.	
	<u> If CFGS = 0 a</u>	and EEPGD =	0: (Accessing c	lata EEPROM	1)		
			WR command i			EPROM.	
bit 4	FREE: Progr	am Flash Eras	e Enable bit				
		-	<u>space)</u> OR <u>CFC</u>			-	
			operation on the	he next WR co	ommand (clear	ed by hardware	after comple
		of erase). forms a write o	peration on the	next WR com	mand		
	0 - 1 Ch		peration on the		inana.		
			0: (Accessing c				
	-			will initiate bot	h a erase cycle	e and a write cyc	de.
bit 3		PROM Error F	•				
			improper prog et attempt (write			empt or termination	tion (bit is se
			operation comp				
bit 2		ram/Erase Ena	•	j			
	-	rogram/erase o					
			rasing of progra	am Flash and	data EEPROM	l	
bit 1	WR: Write Co	ontrol bit					
			sh or data EEPI				
			ned and the bit e set (not cleare			operation is co	mplete.
		•	on to the Flash			e and inactive.	
bit 0	RD: Read Co	-					
			lash or data E	EPROM read	d. Read takes	one cycle. RD	is cleared in
						, .	
	nardware	e. The RD bit o	an only be set	(not cleared) i	n software.		

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

12.2.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-2.

Pin Name	Function Priority ⁽¹⁾
RA0	SDO2 (PIC16(L)F1827 only) RA0
RA1	SS2 (PIC16(L)F1827 only) RA1
RA2	DACOUT (DAC) RA2
RA3	SRQ (SR latch) CCP3 (PIC16(L)F1827 only) C1OUT (Comparator) RA3
RA4	SRNQ (SR latch) CCP4 (PIC16(L)F1827 only) T0CKI C2OUT (Comparator) RA4
RA5	Input only pin
RA6	OSC2 (enabled by Configura- tion Word) CLKOUT CLKR SDO1 P1D P2B (PIC16(L)F1827 only) RA6
RA7	OSC1/CLKIN (enabled by Configuration Word) P1C CCP2 (PIC16(L)F1827 only) P2A (PIC16(L)F1827 only) RA7

TABLE 12-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly described here. For additional information, refer to the appropriate section in this data sheet.

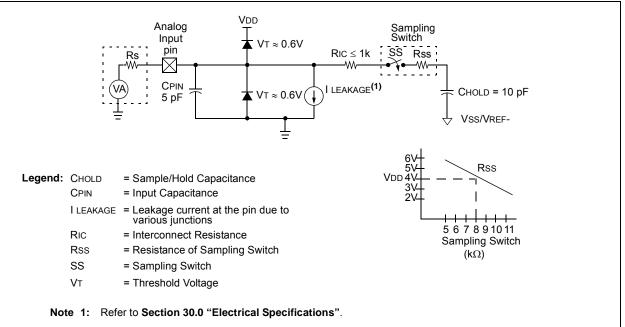
When multiple outputs are enabled, the actual pin control goes to the peripheral with the lowest number in the following lists.

14.3 FVR Control Registers

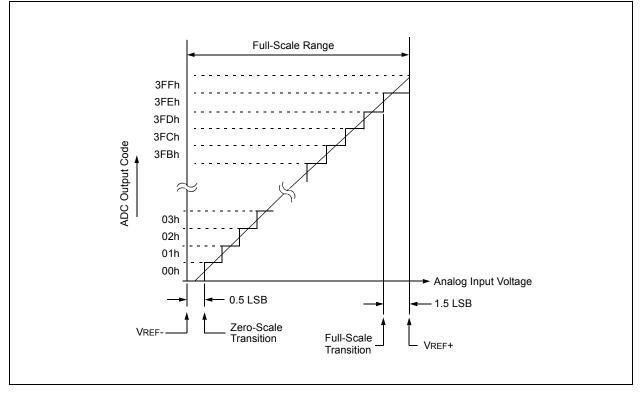
REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	Reserved	Reserved	CDAF	/R<1:0>	ADFVI	R<1:0>	
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion		
bit 7	0 = Fixed Vo 1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled e is enabled					
bit 6	0 = Fixed Vo	ed Voltage Rei Itage Referenc Itage Referenc	e output is no	t ready or not e	enabled			
bit 5-4		Reserved: Read as '0'. Maintain these bits clear.						
bit 3-2	00 = Compar 01 = Compar 10 = Compar	CDAFVR<1:0>: Comparator and DAC Fixed Voltage Reference Selection bit 00 = Comparator and DAC Fixed Voltage Reference Peripheral output is off. 01 = Comparator and DAC Fixed Voltage Reference Peripheral output is 1x (1.024V) 10 = Comparator and DAC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾ 11 = Comparator and DAC Fixed Voltage Reference Peripheral output is 4x (4.096V) ⁽²⁾						
bit 1-0	ADFVR<1:0> 00 = ADC Fix 01 = ADC Fix 10 = ADC Fix	: ADC Fixed V ked Voltage Re ked Voltage Re ked Voltage Re ked Voltage Re	oltage Refere ference Peripl ference Peripl ference Peripl	nce Selection I heral output is heral output is heral output is	bit off. 1x (1.024V) 2x (2.048V) (2)			
	FVRRDY is always '1' on devices with LDO (PIC16F1826/27).							

2: Fixed Voltage Reference output cannot exceed VDD.


TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FVR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	136


Legend: Shaded cells are unused by the FVR module.

PIC16(L)F1826/27

FIGURE 16-4: ANALOG INPUT MODEL

19.2 Comparator Control

Each comparator has 2 control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 19-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The CMxCON1 registers (see Register 19-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

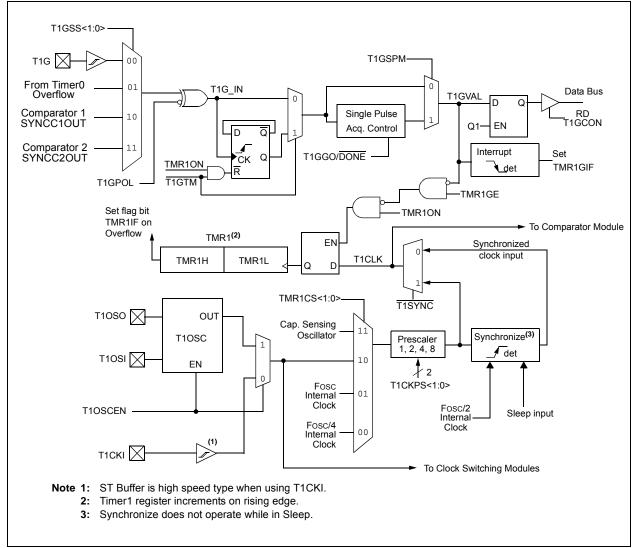
Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 shows the output state versus input conditions, including polarity control.

TABLE 19-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION


The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- · Selectable Gate Source Polarity

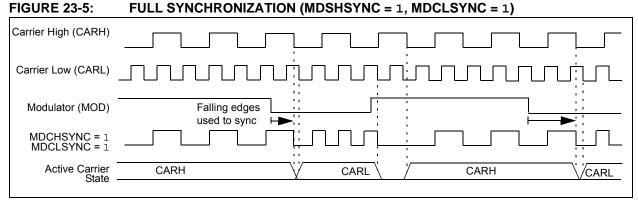

- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt
- Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

PIC16(L)F1826/27

FIGURE 23-4:	CARRIER LOW SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 1)
Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State	

24.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

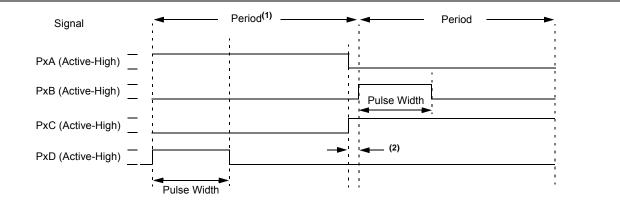
A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 24-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.


Figure 24-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 24-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 24-12: EXAMPLE OF PWM DIRECTION CHANGE

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

FIGURE 25-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

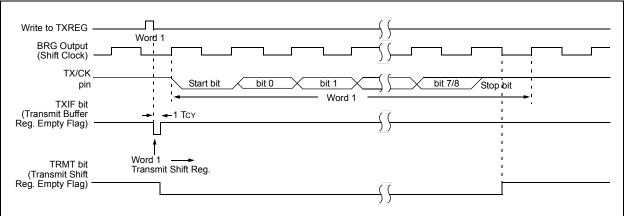
REGISTER 25-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPxOV	SSPxEN	CKP		SSPx	M<3:0>	
bit 7							bit
Legend:							
R = Readable bit		W = Writable bit		•	ted bit, read as '0'		
u = Bit is unchang	ged	x = Bit is unknow				e at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7	0 = No collision <u>Slave mode:</u>	he SSPxBUF registາ າ UF register is written		I while the I ² C condi smitting the previous			to be started
bit 6	SSPxOV: Receiv In SPI mode: 1 = A new byte Overflow ca setting over SSPxBUF r 0 = No overflow In I ² C mode: 1 = A byte is re	ve Overflow Indicato is received while the an only occur in Slav flow. In Master mode egister (must be clear v eccived while the SS eared in software).	SSPxBUF registe e mode. In Slave e, the overflow bit i ared in software).	er is still holding the pr mode, the user must is not set since each r is still holding the pr	read the SSPxBUF new reception (and t	, even if only transmit ransmission) is initiat	ting data, to avoid ed by writing to the
bit 5	In both modes, w In <u>SPI mode:</u> 1 = Enables set 0 = Disables set <u>In I²C mode:</u> 1 = Enables the	rial port and configur erial port and config	pins must be provide the provided set of the p	and SCLx pins as the	source of the serial		
bit 4	CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C Slave mode: SCLx release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I ² C Master mode: Unused in this mode						
bit 3-0	SSPxM<3:0>: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = Fosc/64 0010 = SPI Master mode, clock = SCKx pin, <u>SSx</u> pin control enabled 0100 = SPI Slave mode, clock = SCKx pin, <u>SSx</u> pin control enabled 0101 = SPI Slave mode, clock = SCKx pin, <u>SSx</u> pin control disabled, <u>SSx</u> can be used as I/O pin 0110 = 1 ² C Slave mode, 7-bit address 0101 = 1 ² C Master mode, clock = Fosc/(4 * (SSPxADD+1)) ⁽⁴⁾ 1001 = Reserved 1010 = SPI Master mode, clock = Fosc/(4 * (SSPxADD+1)) ⁽⁵⁾ 1011 = 1 ² C firmware controlled Master mode (Slave idle) 1100 = Reserved 1101 = Reserved 1111 = 1 ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1111 = 1 ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled						
2: Wh 3: Wh 4: SS		erflow bit is not set ins must be properl Ax and SCLx pins n 1 or 2 are not suppo	since each new r y configured as i nust be configure orted for I ² C Moc	reception (and trans nput or output. d as inputs. le.		by writing to the SS	PxBUF register.

5: SSPxADD value of '0' is not supported. Use SSPxM = 0000 instead.

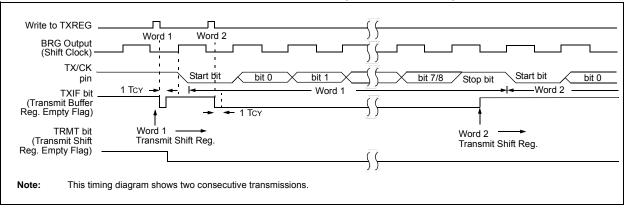
26.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

26.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.


A special 9-bit Address mode is available for use with multiple receivers. See **Section 26.1.2.7** "Address **Detection**" for more information on the address mode.

- 26.1.1.7 Asynchronous Transmission Set-up:
- 1. Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 26-3: ASYNCHRONOUS TRANSMISSION

26.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 26-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all 8 or 9 bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

26.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

26.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 26.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 26.1.2.5				
	"Receive Overrun Error" for more information on overrun errors.				
	information on overrun errors.				

26.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- · RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

PIC16(L)F1826/27

LSLF	Logical Left Shift				
Syntax:	[<i>label</i>]LSLF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.				
	C ← register f ← 0				

LSRF	Logical Right Shift				
Syntax:	[<i>label</i>]LSLF f{,d}				

Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$		
Status Affected:	C, Z		
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		
	0→ register f C		

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.					
Words:	1					
Cycles:	1					
Example:	MOVF FSR, 0					
	After Instruction W = value in FSR register Z = 1					

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended) (Continued)

PIC16LF1826/27							
PIC16F1826/27		Operating temperature			itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Param Device		Min.	Typt	Max.	Units	Conditions	
No.	No. Characteristics	win.	Тур†	WidX.	Units	VDD	Note
Supply Current (IDD) ^(1, 2)							
D019		—	4.0	7.3	mA	3.0	Fosc = 32 MHz
		—	4.4	7.5	mA	3.6	HFINTOSC mode (Note 3)
D019		—	4.2	7.3	mA	3.0	Fosc = 32 MHz
		_	4.6	7.5	mA	5.0	HFINTOSC mode (Note 3)
D020		—	4.0	6.0	mA	3.0	Fosc = 32 MHz
		—	4.7	7.0	mA	3.6	HS Oscillator mode (Note 4)
D020		—	4.2	6.8	mA	3.0	Fosc = 32 MHz
		—	4.9	7.6	mA	5.0	HS Oscillator mode (Note 4)
D021		_	410	0.65	mA	1.8	Fosc = 4 MHz
		—	710	1.25	mA	3.0	EXTRC mode (Note 5)
D021		—	430	0.695	mA	1.8	Fosc = 4 MHz
		_	730	1.3	mA	3.0	EXTRC mode (Note 5)
		—	860	1.35	mA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 8 MHz internal RC oscillator with 4x PLL enabled.

4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

32.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

32.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

32.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.