

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1826t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6:	SPECIAL	FUNCTION	REGISTER	SUMMARY
				••••

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	xxxx xxxx
00Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx
00Eh	—	Unimplement	ed							_	_
00Fh	—	Unimplement	ed							_	_
010h	—	Unimplement	ed							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF ⁽¹⁾	0000 00	0000 00
013h	PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	00 0-0-	00 0-0-
014h	PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	00	00
015h	TMR0	Timer0 Modu	le Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	6-bit TMR1 Re	egister			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Regi	ster for the Mo	st Significant E	Byte of the 16	-bit TMR1 Re	gister			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Modu	le Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Perio	d Register							1111 1111	1111 1111
01Ch	T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
01Dh	—	Unimplement	ed		•	•	•		•	_	—
01Eh	CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
01Fh	CPSCON1	—	-	_	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
Bank 1		•			•	•	•		•	•	
08Ch	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
08Dh	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
08Eh	—	Unimplement	ed		•	•	•		•	_	—
08Fh		Unimplement	ed							—	—
090h		Unimplement	ed							—	—
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	_	CCP2IE ⁽¹⁾	0000 00	0000 00
093h	PIE3 ⁽¹⁾	—	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	00 0-0-	00 0-0-
094h	PIE4 ⁽¹⁾	_	_	_	—	_	_	BCL2IE	SSP2IE	00	00
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	—	RMCLR	RI	POR	BOR	00 11qq	qq qquu
097h	WDTCON	—	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	00 0000
099h	OSCCON	SPLLEN	IRCF3	IRCF2	IRCF1	IRCF0	_	SCS1	SCS0	0011 1-00	0011 1-00
09Ah	OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	10q0 0q00	dddd ddod
09Bh	ADRESL	A/D Result Register Low							xxxx xxxx	uuuu uuuu	
09Ch	ADRESH	A/D Result R	egister High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	ADNREF	ADPREF1	ADPREF0	0000 -000	0000 -000
09Fh	—	Unimplement	ed							—	—

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

		-					-	/			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
40Ch	—	Unimplemen	Inimplemented								
40Dh	—	Unimplement	Inimplemented								_
40Eh	—	Unimplemen	ted							_	_
40Fh	—	Unimplemen	ted							_	_
410h	—	Unimplemen	ted							_	_
411h	—	Unimplemen	ted							_	_
412h	—	Unimplemen	ted							_	_
413h	—	Unimplemen	ted							_	_
414h	—	Unimplemen	ted							_	_
415h	TMR4 ⁽¹⁾	Timer4 Modu	ile Register							0000 0000	0000 0000
416h	PR4 ⁽¹⁾	Timer4 Perio	d Register							1111 1111	1111 1111
417h	T4CON ⁽¹⁾	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	-000 0000
418h	—	Unimplemen	ted							_	_
419h	—	Unimplemen	ted							_	_
41Ah	—	Unimplemen	ted							_	_
41Bh	—	Unimplemen	ted							_	_
41Ch	TMR6 ⁽¹⁾	Timer6 Modu	ile Register							0000 0000	0000 0000
41Dh	PR6 ⁽¹⁾	Timer6 Perio	d Register							1111 1111	1111 1111
41Eh	T6CON ⁽¹⁾		T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	-000 0000	-000 0000
41Fh	_	Unimplement	ted	•	•	-		•		_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-6:**

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: PIC16(L)F1827 only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Value oth Res	on all ner sets
Bank 3	1												
F8Ch	-	Unimplement	ted							-	_	-	_
FE3h													
FE4h	STATUS_	_	_	_	_	_	Z_SHAD	DC_	C_SHAD		-xxx		-uuu
	SHAD							SHAD					
FE5h	WREG_	Working Reg	ister Shadow							0000	0000	uuuu	uuuu
	SHAD												
FE6h	BSR_	—	—	_	Bank Select	Register Sha	dow			x	xxxx	u	uuuu
	SHAD												
FE7h	PCLATH_	—	Program Cou	unter Latch Hig	h Register Sh	adow				-xxx	xxxx	uuuu	uuuu
	SHAD												
FE8h	FSR0L_	Indirect Data	Memory Addr	ess 0 Low Poi	nter Shadow					xxxx	xxxx	uuuu	uuuu
	SHAD												
FE9h	FSR0H_	Indirect Data	Memory Addr	ess 0 High Poi	inter Shadow					xxxx	xxxx	uuuu	uuuu
	SHAD												
FEAh	FSR1L_	Indirect Data	Memory Addr	ess 1 Low Poir	nter Shadow					xxxx	xxxx	uuuu	uuuu
	SHAD												
FEBh	FSR1H_	Indirect Data	Memory Addr	ess 1 High Poi	inter Shadow					xxxx	xxxx	uuuu	uuuu
	SHAD												
FECh	_	Unimplemen	ted							-	_	-	_
FEDh	STKPTR	_	—	—	Current Stac	k pointer				1	1111	1	1111
FEEh	TOSL	Top-of-Stack	Low byte							xxxx	xxxx	uuuu	uuuu
FEFh	TOSH	_	Top-of-Stack	High byte						-xxx	xxxx	-uuu	uuuu

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:logistical_logistical$

Shaded locations are unimplemented, read as '0'.

Note 1: PIC16(L)F1827 only.

5.2.1.5 TIMER1 Oscillator

The Timer1 Oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 Oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 5.3 "Clock Switching"** for more information.

FIGURE 5-5: QUARTZ CRYSTAL OPERATION (TIMER1 OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

5.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. The function of the OSC2/CLKOUT pin is determined by the state of the CLKOUTEN bit in Configuration Word 1.

Figure 5-6 shows the external RC mode connections.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- · threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

FIGURE	IGURE 8-2: INTERRUPT LATENCY							
OSC1				MM				
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		
Execute	1 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute-	2 Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

4: For minimum width of INT pulse, refer to AC specifications in Section 30.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

12.0 I/O PORTS

Depending on the device selected and peripherals enabled, there are two ports available. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- · TRISx registers (data direction register)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

TABLE 12-1:PORT AVAILABILITY PER
DEVICE

Device	PORTA	РОКТВ	PORTC
PIC16(L)F1826	•	•	
PIC16(L)F1827	•	٠	٠

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports with analog functions also have an ANSELx register which can disable the digital input and save power. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT

EXAMPLE 12-1: INITIALIZING PORTA

;	This	code	example	illustrates	
---	------	------	---------	-------------	--

- ; initializing the PORTA register. The
- ; other ports are initialized in the same
- ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

16.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \quad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/511)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.001957)
= 1.12\mus

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.42\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

19.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 19-1:

SINGLE COMPARATOR

21.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

21.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

21.9 ECCP/CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 24.0 "Capture/Compare/PWM Modules".

21.10 ECCP/CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see **Section 16.2.5** "Special **Event Trigger**".

FIGURE 21-2: TIMER1 INCREMENTING EDGE

23.1 DSM Operation

The DSM module can be enabled by setting the MDEN bit in the MDCON register. Clearing the MDEN bit in the MDCON register, disables the DSM module by automatically switching the carrier high and carrier low signals to the VSS signal source. The modulator signal source is also switched to the MDBIT in the MDCON register. This not only assures that the DSM module is inactive, but that it is also consuming the least amount of current.

The values used to select the carrier high, carrier low, and modulator sources held by the Modulation Source, Modulation High Carrier, and Modulation Low Carrier control registers are not affected when the MDEN bit is cleared and the DSM module is disabled. The values inside these registers remain unchanged while the DSM is inactive. The sources for the carrier high, carrier low and modulator signals will once again be selected when the MDEN bit is set and the DSM module is again enabled and active.

The modulated output signal can be disabled without shutting down the DSM module. The DSM module will remain active and continue to mix signals, but the output value will not be sent to the MDOUT pin. During the time that the output is disabled, the MDOUT pin will remain low. The modulated output can be disabled by clearing the MDOE bit in the MDCON register.

23.2 Modulator Signal Sources

The modulator signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- CCP3 Signal
- CCP4 Signal
- MSSP1 SDO1 Signal (SPI Mode Only)
- MSSP2 SDO2 Signal (SPI Mode Only)
- · Comparator C1 Signal
- · Comparator C2 Signal
- EUSART TX Signal
- External Signal on MDMIN1 pin
- · MDBIT bit in the MDCON register

The modulator signal is selected by configuring the MDMS <3:0> bits in the MDSRC register.

23.3 Carrier Signal Sources

The carrier high signal and carrier low signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- CCP3 Signal
- CCP4 Signal
- Reference Clock Module Signal
- External Signal on MDCIN1 pin
- · External Signal on MDCIN2 pin
- Vss

The carrier high signal is selected by configuring the MDCH <3:0> bits in the MDCARH register. The carrier low signal is selected by configuring the MDCL <3:0> bits in the MDCARL register.

23.4 Carrier Synchronization

During the time when the DSM switches between carrier high and carrier low signal sources, the carrier data in the modulated output signal can become truncated. To prevent this, the carrier signal can be synchronized to the modulator signal. When synchronization is enabled, the carrier pulse that is being mixed at the time of the transition is allowed to transition low before the DSM switches over to the next carrier source.

Synchronization is enabled separately for the carrier high and carrier low signal sources. Synchronization for the carrier high signal can be enabled by setting the MDCHSYNC bit in the MDCARH register. Synchronization for the carrier low signal can be enabled by setting the MDCLSYNC bit in the MDCARL register.

Figure 23-1 through Figure 23-5 show timing diagrams of using various synchronization methods.

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES TABLE 24-9

Note 1: PWM Steering enables outputs in Single mode.

EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH **FIGURE 24-6:** STATE)

PxM<1:0>		Signal	0	Pulse Width	•	PRX+1
			-		Period	►
00	(Single Output)	PxA Modulated				
		PxA Modulated		y ►		
10	(Half-Bridge)	PxB Modulated	i i			
	PxA Active	i		· · ·		
0.1	(Full-Bridge,	PxB Inactive			1 1 1	
01	⁰¹ Forward)	PxC Inactive				
		PxD Modulated			-į	
		PxA Inactive	i		1 1	1 1 1
11	(Full-Bridge,	PxB Modulated				
-	Reverse)	PxC Active -				
		PxD Inactive	I		1	

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

24.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 24-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.

Figure 24-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD become inactive, while output PxC becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 24-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 24-12: EXAMPLE OF PWM DIRECTION CHANGE

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

24.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 24-19 and 24-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

24.4.7 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMRxIF bit of the PIRx register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

24.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFCON0 and APFCON1. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.

FIGURE 24-19: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)

FIGURE 24-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRxSYNC = 1)

25.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 25-18 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPx-STAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPx-BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

25.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. Setting CKP will release SCLx and allow more communication.

25.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

- **Note 1:** The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the 9th falling edge of SCLx.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPxBUF was loaded before the 9th falling edge of SCLx. It is now always cleared for read requests.

25.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.

25.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCLx for a received matching address byte. When DHEN bit of SSPxCON3 is set; CKP is cleared after the 8th falling edge of SCLx for received data.

Stretching after the 8th falling edge of SCLx allows the slave to look at the received address or data and decide if it wants to ACK the received data.

25.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 25-22).

FIGURE 25-23: CLOCK SYNCHRONIZATION TIMING

25.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

25.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

25.6.7.2 SSPxOV Status Flag

In receive operation, the SSPxOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

25.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). 25.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all 8 bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the Master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxUF, clears BF.
- Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the Slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC (.300")

20-Lead SSOP

28-Lead QFN/UQFN

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Internal Sampling Switch (Rss) IMPEDANCE	149
Internet Address	403
Interrupt-On-Change	131
Associated Registers	133
Interrupts	81
ADC	144
Associated registers w/ Interrupts	94
Configuration Word w/ Clock Sources	67
Configuration Word w/ PORTA	124
Configuration Word w/ Reference Clock Sources	71
TMR1	181
INTOSC Specifications	355
IOCBF Register	132
IOCBN Register	132
IOCBP Register	132

L

LATA Register	
LATB Register	
Load Conditions	
LSLF	
LSRF	

Μ

Master Synchronous Serial Port. See MSSPx	
MCLR.	76
Internal	76
MDCARH Register	. 200
MDCARL Register	. 201
MDCON Register	. 198
MDSRC Register	. 199
Memory Organization	17
Data	20
Program	17
Microchip Internet Web Site	.403
Migrating from other PIC Microcontroller Devices	. 393
MOVIW	. 334
MOVLB	. 334
MOVWI	. 335
MPLAB ASM30 Assembler, Linker, Librarian	. 380
MPLAB Integrated Development Environment Software .	. 379
MPLAB PM3 Device Programmer	. 382
MPLAB REAL ICE In-Circuit Emulator System	. 381
MPLINK Object Linker/MPLIB Object Librarian	. 380
MSSPx	. 231
I ² C Mode	. 242
I ² C Mode Operation	. 244
SPI Mode	. 234
SSPxBUF Register	.237
SSPxSR Register	. 237
-	

0

OPCODE Field Descriptions	
OPTION	
OPTION_REG Register	
OSCCON Register	65
Oscillator	
Associated Registers	67
Oscillator Module	51
ECH	51
ECL	51
ECM	51
HS	51
INTOSC	51
LP	51
RC	51

ХТ	
Oscillator Parameters	355
Oscillator Specifications	354
Oscillator Start-up Timer (OST)	
Specifications	359
Oscillator Switching	
Fail-Safe Clock Monitor	63
Two-Speed Clock Start-up	61
OSCSTAT Register	
OSCTUNE Register	67

Ρ

P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/ PWM (ECCP)	212
Packaging	383
Marking	383
PDIP Details	384
PCL and PCLATH	16
PCI Register	27
PCI ATH Register	27
PCON Register	28 79
PIF1 Register	28 87
PIF2 Register	88
PIF3 Register	
PIF4 Register	90
Pin Diagram	
PIC16F/I E1826/27 18-nin PDIP/SOIC	4
PIC16F/LE1826/27, 28-nin OEN/LIOEN	
Pinout Descriptions	
PIC16F/I E1826/27	11
PIP1 Pogistor	28 01
PIR1 Register	20, 91
PIR2 Register	20, 92
PIRJ Register	93
	94
	120
	120
	124
	28, 29
Specifications	357
PORTA Register	122
PORTB	125
Additional Pin Functions	
Weak Pull-up	127
ANSELB Register	125
Associated Registers	129
Interrupt-on-Change	125
P1B/P1C/P1D.See Enhanced Capture/Compare/	
PWM+ (ECCP+)	125
Pin Descriptions and Diagrams	129
PORTB Register	28, 29
PORTB Register	127
Power-Down Mode (Sleep)	95
Associated Registers 9	6, 201
Power-on Reset	74
Power-up Time-out Sequence	76
Power-up Timer (PWRT)	74
Specifications	359
PR2 Register	28, 32
Precision Internal Oscillator Parameters	355
Program Memory	17
Map and Stack (PIC16F/LF1826)	18
Map and Stack (PIC16F/LF1826/27)	17, 18
Programming, Device Instructions	325
PSTRxCON Register	230
PWM (ECCP Module)	
PWM Steering	223