

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1827-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18/20/28-Pin Flash Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU:

- C Compiler Optimized Architecture
- 256 bytes Data EEPROM
- Up to 8 Kbytes Linear Program Memory Addressing
- Up to 384 bytes Linear Data Memory Addressing
- Interrupt Capability with Automatic Context Saving
- 16-Level Deep Hardware Stack with Optional Overflow/Underflow Reset
- Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
- FSRs can read program and data memory

Flexible Oscillator Structure:

- Precision 32 MHz Internal Oscillator Block:
- Factory calibrated to ± 1%, typical
 - Software selectable frequencies range of 31 kHz to 32 MHz
- 31 kHz Low-Power Internal Oscillator
- · Four Crystal modes up to 32 MHz
- Three External Clock modes up to 32 MHz
- 4X Phase-Lock Loop (PLL)
- Fail-Safe Clock Monitor:
- Allows for safe shutdown if peripheral clock stops
- Two-Speed Oscillator Start-up
- Reference Clock Module:
- Programmable clock output frequency and duty-cycle

Special Microcontroller Features:

- 1.8V-5.5V Operation PIC16F1826/27
- 1.8V-3.6V Operation PIC16LF1826/27
- Self-Programmable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Programmable Brown-out Reset (BOR)
- Extended Watchdog Timer (WDT):
- Programmable period from 1ms to 268s
- Programmable Code Protection
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- In-Circuit Debug (ICD) via two pins
- Enhance Low-Voltage Programming
- · Power-Saving Sleep mode

Extreme Low-Power Management PIC16LF1826/27 with nanoWatt XLP:

- Operating Current: 75 μA @ 1 MHz, 1.8V, typical
- Sleep mode: 30 nA
- Watchdog Timer: 500 nA
- Timer1 Oscillator: 600 nA @ 32 kHz

Analog Features:

- Analog-to-Digital Converter (ADC) Module:
 - 10-bit resolution, 12 channels
 - Auto acquisition capability
 - Conversion available during Sleep
- Analog Comparator Module:
 - Two rail-to-rail analog comparators
 - Power mode control
 - Software controllable hysteresis
- Voltage Reference Module:
 - Fixed Voltage Reference (FVR) with 1.024V, 2.048V and 4.096V output levels
 - 5-bit rail-to-rail resistive DAC with positive and negative reference selection

Peripheral Highlights:

- 15 I/O Pins and 1 Input Only Pin:
 - High current sink/source 25 mA/25 mA
 - Programmable weak pull-ups
 - Programmable interrupt-on- change pins
- Timer0: 8-Bit Timer/Counter with 8-Bit Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Dedicated, low-power 32 kHz oscillator driver
- Up to three Timer2-types: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
- Up to two Capture, Compare, PWM (CCP) Modules
- Up to two Enhanced CCP (ECCP) Modules:
 - Software selectable time bases
 - Auto-shutdown and auto-restart
 - PWM steering
- Up to two Master Synchronous Serial Port (MSSP) with SPI and I²C[™] with:
 - 7-bit address masking
 - SMBus/PMBus™ compatibility
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) Module
- mTouch™ Sensing Oscillator Module:
- Up to 12 input channelsData Signal Modulator Module:
- Selectable modulator and carrier sources
- SR Latch:
 - Multiple Set/Reset input options
 - Emulates 555 Timer applications

TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP

	BANK 0	•	BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh		30Dh	_	38Dh	_
00Eh	_	08Eh	_	10Eh	_	18Eh	_	20Eh	_	28Eh	_	30Eh	—	38Eh	_
00Fh	_	08Fh	_	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	—	38Fh	_
010h		090h	_	110h	—	190h	_	210h	_	290h	—	310h		390h	
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L ⁽¹⁾	391h	—
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H ⁽¹⁾	392h	_
013h	PIR3 ⁽¹⁾	093h	PIE3 ⁽¹⁾	113h	CM2CON0	193h	EEDATL	213h	SSP1MASK	293h	CCP1CON	313h	CCP3CON ⁽¹⁾	393h	_
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	SSP1CON3	297h	—	317h	—	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	_	298h	CCPR2L ⁽¹⁾	318h	CCPR4L ⁽¹⁾	398h	_
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H ⁽¹⁾	319h	CCPR4H ⁽¹⁾	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON ⁽¹⁾	31Ah	CCP4CON ⁽¹⁾	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MASK ⁽¹⁾	29Bh	PWM2CON ⁽¹⁾	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS ⁽¹⁾	31Ch	_	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON ⁽¹⁾	29Dh	PSTR2CON ⁽¹⁾	31Dh	_	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS ⁽¹⁾	31Eh	—	39Eh	MDCARL
01Fh	CPSCON1	09Fh	_	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh	_	31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h	General	2A0h		320h		3A0h	
			General		General		General		Purpose						
			Purpose		Purpose		Purpose		A8 Bytes ⁽¹⁾		Unimplemented		Unimplemented		Unimplemented
	General		Register		Register		Register		+0 Dytes		Read as '0'		Read as '0'		Read as '0'
	Purpose		80 Bytes		80 Bytes		80 Bytes ⁽¹⁾		Unimplemented						
06Fh	Register	0FFh		16Fh		1FFh		26Fh	Read as '0'	2FFh		36Fh		3EFh	
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1827.

TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	_	48Ch	_	50Ch	_	58Ch	_	60Ch	_	68Ch	_	70Ch	—	78Ch	_
40Dh	_	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh	—	58Eh	—	60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	—	48Fh	—	50Fh	—	58Fh	—	60Fh	—	68Fh	—	70Fh	—	78Fh	—
410h	_	490h	_	510h	_	590h	—	610h	_	690h	_	710h		790h	—
411h	_	491h		511h		591h		611h		691h		711h		791h	—
412h	—	492h	_	512h	_	592h	_	612h	_	692h	_	712h	_	792h	_
413h	_	493h		513h		593h		613h		693h		713h		793h	_
414h	(1)	494h	_	514h		594h		614h		694h		714h		794h	_
415h	TMR4 ⁽¹⁾	495h		515h		595h		615h		695h		715h	_	795h	_
416h	PR4 ⁽¹⁾	496h	—	516h	—	596h	—	616h	—	696h	—	716h	—	796h	—
417h	T4CON ⁽¹⁾	497h	—	517h	—	597h	_	617h	—	697h	—	717h	—	797h	_
418h	_	498h	—	518h	—	598h	—	618h	—	698h	—	718h	—	798h	—
419h	—	499h	—	519h	—	599h	—	619h	—	699h	—	719h	—	799h	—
41Ah	_	49Ah	—	51Ah	_	59Ah	—	61Ah	—	69Ah	—	71Ah	_	79Ah	_
41Bh	_	49Bh	—	51Bh	—	59Bh	—	61Bh	—	69Bh	—	71Bh	_	79Bh	_
41Ch	TMR6 ⁽¹⁾	49Ch	—	51Ch	—	59Ch	—	61Ch	—	69Ch	—	71Ch	—	79Ch	—
41Dh	PR6 ⁽¹⁾	49Dh	—	51Dh	—	59Dh	_	61Dh	—	69Dh	—	71Dh	—	79Dh	_
41Eh	T6CON ⁽¹⁾	49Eh	—	51Eh	—	59Eh	—	61Eh	—	69Eh	—	71Eh	—	79Eh	—
41Fh	—	49Fh	_	51Fh	_	59Fh		61Fh	_	69Fh	_	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh	AEEh	Accesses 70h – 7Fh	57Eb	Accesses 70h – 7Fh		Accesses 70h – 7Fh	075	Accesses 70h – 7Fh	055	Accesses 70h – 7Fh		Accesses 70h – 7Fh	7661	Accesses 70h – 7Fh
47⊦h		4660		5/11		5⊢⊦h		67⊦h		ö⊢⊦h		//⊦h		/⊦⊦h	

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-4:PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	Bank 31	
F80h	Core Registers (Table 3-2)	
F8Bh F8Ch	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	_	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
FF0h FFFh	Common RAM (Accesses 70h – 7Fh)	

= Unimplemented data memory locations, read as '0',

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Word 2 is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

4.5 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

10.6 Watchdog Control Register

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0			
	—			WDTPS<4:02	>		SWDTEN			
bit 7							bit (
Legend:	L.1		L :4			L = = (O)				
R = Readable	DIT	vv = vvritable	DIT		nented bit, read					
u = Bit is unch	anged	x = Bit is unkr	iown	-m/n = Value	at POR and BC	DR/Value at all	other Resets			
1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimpleme	ented: Read as '	0'							
bit 5-1	WDTPS<4:(0>: Watchdog Ti	mer Period S	elect bits ⁽¹⁾						
	Bit Value =	Prescale Rate								
	00000 = 1	:32 (Interval 1 m	s nominal)							
	00001 = 1	:64 (Interval 2 m	s nominal)							
	00010 = 1	:128 (Interval 4 r	ns nominal)							
	00011 = 1	:256 (Interval 8 r	ns nominal)							
	00100 = 1	:512 (Interval 16 :1024 (Interval 3	ms nominal) 2 ms nominal	`						
	00101 = 1	1:2048 (Interval 64 ms nominal)								
	00111 = 1	:4096 (Interval 1	28 ms nomina	al)						
	01000 = 1	:8192 (Interval 2	56 ms nomina	al)						
	01001 = 1	:16384 (Interval	512 ms nomii	nal)						
	01010 = 1	:32768 (Interval	1s nominal)							
	01011 = 1	:65536 (Interval	2s nominal) ((Reset value)						
	01100 = 1 01101 = 1	·262144 (2 ¹⁸) (Ir	iterval 45 non	ninal)						
	01101 = 1 01110 = 1	:524288 (2 ¹⁹) (Ir	iterval 16s no	minal)						
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s n	ominal)						
	10000 = 1	:2097152 (2 ²¹) (Interval 64s n	ominal)						
	10001 = 1	:4194304 (2 ²²) (Interval 128s	nominal)						
	10010 = 1	:8388608 (2 ²³) (Interval 256s	nominal)						
	10011 = R	eserved. Result	s in minimum	interval (1:32)						
	•									
	•									
	11111 = R	eserved. Result	s in minimum	interval (1:32)						
bit 0	SWDTEN: S	Software Enable/	Disable for W	/atchdog Timer	bit					
	<u>If WDTE<1:</u>	0> = <u>00</u> :								
	This bit is ig	nored.								
	If WDTE<1:	0 > = 01:								
	1 = WDT is	turned on								
		$\Omega > = 1 x^{-1}$								
	This hit is in	nored								

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

12.0 I/O PORTS

Depending on the device selected and peripherals enabled, there are two ports available. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRISx registers (data direction register)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

TABLE 12-1:PORT AVAILABILITY PER
DEVICE

Device	PORTA	РОКТВ	PORTC
PIC16(L)F1826	•	•	
PIC16(L)F1827	•	٠	٠

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports with analog functions also have an ANSELx register which can disable the digital input and save power. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT

EXAMPLE 12-1: INITIALIZING PORTA

;	This	code	example	illustrates	
---	------	------	---------	-------------	--

- ; initializing the PORTA register. The
- ; other ports are initialized in the same
- ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

FIGURE 21-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL Counting enabled on
T1G_IN	rising edge of T1G
т1СКІ	
T1GV <u>AL</u>	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by software Cleared by hardware on falling edge of T1GVAL

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PxRSEN				PxDC<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PxRSEN: PV	VM Restart Ena	ıble bit				
	1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away the PW/M restarts automatically.						ent goes away;
	0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM						
bit 6-0	PxDC<6:0>:	PWM Delay Co	ount bits				
	PxDCx =Nun trai	nber of Fosc/4 (nsition active ar	4 * Tosc) cycl nd the actual	es between the time it transition	scheduled time s active	e when a PWM	signal should

REGISTER 24-4: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

25.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 25-18 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPx-STAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPx-BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

26.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

26.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 26-5: ASYNCHRONOUS RECEPTION

26.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

26.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 26-7), and asynchronously if the device is in Sleep mode (Figure 26-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

26.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 26-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

FIGURE 26-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

97 The \$339-4.87 remains in him while the WOE hit is set.

NOTES:

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow TO$ $1 \rightarrow PD$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	CO	
Syntax:	[label] CALLW	Synta	
Operands:	None	Oper	
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Oper Statu	
Status Affected:	None	Desc	
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.		

COMF	Complement f						
Syntax:	[label] COMF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$						
Operation:	$(\overline{f}) \rightarrow (destination)$						
Status Affected:	Z						
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.						

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) set.

is

RETFIE	Return from Interrupt								
Syntax:	[label] RETFIE								
Operands:	None								
Operation:	$TOS \rightarrow PC,$ 1 \rightarrow GIE								
Status Affected:	None								
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction								
Words:	1								
Cycles:	2								
Example:	RETFIE								
	After Interrupt PC = TOS GIE = 1								

RETURN	Return from Subroutine						
Syntax:	[label] RETURN						
Operands:	None						
Operation:	$TOS\toPC$						
Status Affected:	None						
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.						

RETLW	Return with literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	Operation:	$d \in [0,1]$ See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1		C Register f
Cycles:	2	Words:	1
Example:	CALL TABLE;W contains table ;offset value	Cycles:	1
	• ;W now has table value	Example:	RLF REG1,0
TABLE	•		Before Instruction
	• ADDWF PC ;W = offset		REG1 = 1110 0110
	RETLW k1 ;Begin table		C = 0 After Instruction
	RETLW k2 ;		REG1 = 1110 0110
	•		W = 1100 1100
	•		C = 1
	RETLW kn ; End of table		
	Before Instruction W = 0x07 After Instruction		

W =

value of k8

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended) (Continued)

PIC16LF1826/27			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16F1826/27		Standard Operating	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param	Device	Min	Tynt	Max	Unite	Conditions			
No.	Characteristics		1961	max.	onito	Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D019		_	4.0	7.3	mA	3.0	Fosc = 32 MHz		
			4.4	7.5	mA	3.6	HFINTOSC mode (Note 3)		
D019		_	4.2	7.3	mA	3.0	Fosc = 32 MHz		
		-	4.6	7.5	mA	5.0	HFINTOSC mode (Note 3)		
D020		_	4.0	6.0	mA	3.0	Fosc = 32 MHz		
		—	4.7	7.0	mA	3.6	HS Oscillator mode (Note 4)		
D020			4.2	6.8	mA	3.0	Fosc = 32 MHz		
		—	4.9	7.6	mA	5.0	HS Oscillator mode (Note 4)		
D021			410	0.65	mA	1.8	Fosc = 4 MHz		
			710	1.25	mA	3.0	EXTRC mode (Note 5)		
D021			430	0.695	mA	1.8	Fosc = 4 MHz		
			730	1.3	mA	3.0	EXTRC mode (Note 5)		
		—	860	1.35	mA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 8 MHz internal RC oscillator with 4x PLL enabled.

4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 30-8: PIC16(L)F1826/27 A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at +25°C										
Param No.	Sym.	Characteristic Min. Typ† Max. Units Conditions								
AD01	NR	Resolution	_		10	bit				
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V			
AD04	EOFF	Offset Error			±2.5	LSb	VREF = 3.0V			
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V			
AD06	Vref	Reference Voltage ⁽³⁾	_		Vdd	V	VREF = (VREF+ minus VREF-) (NOTE 5)			
AD07	VAIN	Full-Scale Range	_		VREF	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	—	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: FVR voltage selected must be 2.048V or 4.096V.

TABLE 30-9: PIC16(L)F1826/27 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Param No. Sym. Characteristic Min. Typ† Max. Units Conditions									
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.5	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)			
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11	—	Tad	Set GO/DONE bit to conversion complete			
AD132*	TACQ	Acquisition Time	_	5.0	_	μS				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \downarrow or SCKx \uparrow input		Тсү		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	TCY + 20	_	-	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20		—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100	_	—	ns	
SP74*	TscH2dlL, TscL2dlL	Hold time of SDIx data input to S	lold time of SDIx data input to SCKx edge			—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDOx data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-impe	10		50	ns		
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	—	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	_	_	50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	_	_	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу	_	—	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	_		50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	_	_	ns	

TABLE 30-14: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*