

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1827t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1826/27 are described within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1826/27 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16F/LF1826	PIC16(L)F1827
ADC		•	•
Capacitive Sensing Mod	dule	•	•
Digital-to-Analog Conve	erter (DAC)	•	•
Digital Signal Modulator	r (DSM)	•	•
EUSART		•	•
Fixed Voltage Referenc	e (FVR)	•	•
Reference Clock Modul	e	•	•
SR Latch		•	•
Capture/Compare/PWN	1 Modules	-	
	ECCP1	•	•
	ECCP2		•
	CCP3		•
	CCP4		•
Comparators		-	
	C1	•	•
	C2	•	•
Master Synchronous Se	erial Ports	-	
	MSSP1	•	•
	MSSP2		•
Timers	•	-	
	Timer0	•	•
	Timer1	•	•
	Timer2	•	•
	Timer4		•
	Timer6		•

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "Linear Data Memory" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-3 and Table 3-4.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Word 1. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Timer1 Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 5-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be cleared before the OSFIF flag can be cleared.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the Status bits in the OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed.

5.6 Oscillator Control Registers

R/W-0/	0 R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLE	N	IRCF	<3:0>			SCS	<1:0>
bit 7						I	bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	inchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7 SPLLEN: Software PLL Enable bit <u>If PLLEN in Configuration Word 1 = 1:</u> SPLLEN bit is ignored. 4x PLL is always enabled (subject to oscillator requirements) <u>If PLLEN in Configuration Word 1 = 0:</u> 1 = 4x PLL is enabled 0 = 4x PLL is disabled							
bit 6-3	IRCF<3:0>: 000x =31 k 0010 =31.2 0011 =31.2 0100 =62.5 0101 =125 0110 =250 0111 =500 1000 =125 1001 =250 1010 =500 1011 =1 MI 1100 =2 MI 1101 =4 MI 1110 =8 MI 1111 =16 M	Internal Oscillat Hz LF 5 kHz MF 5 kHz HF ⁽¹⁾ kHz MF kHz MF kHz MF (default kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ Hz HF Hz HF Hz HF Hz HF Hz HF	or Frequency upon Reset)	Select bits	FOSC")		
bit 2 bit 1-0	Unimpleme SCS<1:0>: 1x = Interna 01 = Timer 00 = Clock	ented: Read as ' System Clock S al oscillator block l oscillator determined by F	0' elect bits S OSC<2:0> in	Configuration V	Vord 1.		
Note 1:	Duplicate freque	ncy derived from	HFINTOSC.				

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

8.6.9 PIR4 REGISTER⁽¹⁾

The PIR4 register contains the interrupt flag bits, as shown in Register 8-9.

- **Note 1:** The PIR4 register is available only on the PIC16(L)F1827 device.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	—	—	BCL2IF	SSP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Bit is set by hardware

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
	1 = A Bus Collision was detected (must be cleared in software)0 = No Bus collision was detected
bit 0	 SSP2IF: Master Synchronous Serial Port 2 (MSSP2) Interrupt Flag bit 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting to Transmit/Receive/Bus Condition in progress

Note 1: This register is only available on PIC16(L)F1827.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIE3 ⁽¹⁾	_	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	89
PIE4 ⁽¹⁾	_	_	_	_	-	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF ⁽¹⁾	92
PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	94

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

Note 1: PIC16(L)F1827 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimplem	ented bit, read a	as '0'	
u = Bit is uncha	nged	x = Bit is unkn	own	-n/n = Value at	POR and BOR	Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	RXDTSEL: Pir 0 = RX/DT fur 1 = RX/DT fur	n Selection bit nction is on RB nction is on RB2	1				
bit 6	SDO1SEL: Pir 0 = SDO1 fun 1 = SDO1 fun	n Selection bit action is on RB2 action is on RA6					
bit 5	SS1SEL: Pin S 0 = SS1 funct 1 = SS1 funct	Selection bit ion is on RB5 ion is on RA5					
bit 4	P2BSEL: Pin 3 0 = P2B funct 1 = P2B funct	Selection bit ion is on RB7 ion is on RA6					
bit 3	CCP2SEL: Pir 0 = CCP2/P2 1 = CCP2/P2	n Selection bit A function is on A function is on	RB6 RA7				
bit 2	P1DSEL: Pin 3 0 = P1D funct 1 = P1D funct	Selection bit tion is on RB7 tion is on RA6					
bit 1	P1CSEL: Pin 3 0 = P1C funct 1 = P1C funct	Selection bit tion is on RB6 tion is on RA7					
bit 0	CCP1SEL: Pir 0 = CCP1/P1. 1 = CCP1/P1.	n Selection bit A function is on A function is on	RB3 RB0				

REGISTER 12-1: APFCON0: ALTERNATE PIN FUNCTION CONTROL REGISTER 0

Note 1: PIC16(L)F1827 only.

REGISTER 12-2: APFCON1: ALTERNATE PIN FUNCTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
	—	—	_		—	—	TXCKSEL	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	red					
bit 7-1	Unimplement	ed: Read as '0'						
bit 0 TXCKSEL: Pin Selection bit								
	0 = TX/CK fu	nction is on RB2	2					
1 = TX/CK function is on RB5								

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	127
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	127
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	128

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

16.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "A/D Acquisition Requirements".

EXAMPLE 16-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel AN0 MOVLW MOVWE ;Turn ADC On ADCON0 SampleTime ; Acquisiton delay CALL ADCON0, ADGO ; Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH ; BANKSEL ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTIO ;Store in GPR space

FIGURE 18-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
MDCLODIS	MDCLPOL	MDCLSYNC			MDCL	_<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	MDCLODIS: 1 = Output s is disable 0 = Output s is enable	Modulator Low ignal driving the ed ignal driving the ed	Carrier Outp peripheral c peripheral c	out Disable bit output pin (select output pin (select	ed by MDCL<3	3:0> of the MD0 3:0> of the MD0	CARL register) CARL register)
bit 6	MDCLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted						
bit 5	<pre>MDCLSYNC 1 = Modulate time carr 0 = Modulate</pre>	: Modulator Low or waits for a fall rier or Output is not	Carrier Syn ing edge on t synchronize	chronization En the low time carr d to the low time	able bit ier signal before carrier signal ⁽	e allowing a sw 1)	itch to the high
bit 4	Unimplemer	ted: Read as 'o)'		-		
bit 3-0	MDCL<3:0>	Modulator Data	High Carrie	r Selection bits (1)		
	1111 = Reserved. No channel connected.						
	1000 = Res 0111 = CCF 0110 = CCF 0101 = CCF 0100 = CCF 0011 = Refe 0010 = MD0 0001 = MD0 0000 = Vss	erved. No char P4 output (PWN P3 output (PWN P2 output (PWN P1 output (PWN erence Clock m CIN2 port pin CIN1 port pin	nel connecto l Output moo l Output moo l Output moo l Output moo odule signal	ed. de only) de only) de only) de only)			

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

TABLE 23-1:	SUMMARY OF REGISTERS	S ASSOCIATED WITH DATA	SIGNAL MODULATOR MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	_		MDCH	1<3:0>		200
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_	MDCL<3:0>			201	
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—	—	MDBIT	198
MDSRC	MDMSODIS	_	—	_	MDMS<3:0>				199

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PxRSEN				PxDC<6:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	d as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit			nknown -n/n = Value at POR and BOR/Value at all other Reset						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	PxRSEN: PV	VM Restart Ena	ıble bit							
	1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away the PW/M restarts automatically.									
	0 = Upon au	ito-shutdown, C	t be cleared in s	software to rest	tart the PWM					
bit 6-0 PxDC<6:0>: PWM Delay Count bits										
PxDCx =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active										

REGISTER 24-4: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

25.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 25-1 shows the block diagram of the MSSPx module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 25-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 25-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDOx pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After 8 bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

FIGURE 25-9:	SPI MODE WAVEFORM	(SLAVE MODE WITH CKE = 0)

	 å	4 8 9 9	\$ s :	; } ;) { ; ;	} & > >	} }			4
80%) (0%91= 1 0%61= 0)						<pre></pre>				5 5 5 5 5
Water to SISP28345 Visiti		e 5 5 4 2	<pre></pre>		< ; ; ; ; ;	c 5 5 5 2	> > < {	, , , , , , , , , , , , , , , , , , , ,	, ; ; ;	: : : :
- 6674)z	X në 7		X 58 5	X 158-4	K ess	X. est 2.	X 88	X	0.86	
S235			, ,				////////////////////////////////		IMp,	* } ;
impui Saugès	2022 7 				: : : : : : : : : : : : : : : : : : :	: : : : : : : : : : : : : : : : : : :			20 A	
st Siltaili Informasi		2 2 2 2 2 2 2	> : > : > : > :	- - - -	* * * \$	> > > <	s 2 2 2 2	; ; ; . ; .	· · · · · · · · · · · · · · · · · · · ·	
***9 SSP2SR & SSP2SR &		s s s	< < <			s s s	< < <	· · · · · · · · · · · · · · · · · · ·	4. 	
Valis Collision dependent volum									******	

FIGURE 25-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SSx Nor Optional					
SCKx (CKP = <u>0</u> CKE = 1)					
SCKx (CKP = 1 CKE = 1)					
Write to SSPxBUF		1 1 1 1 1 1 1 1 1 1 1 1			
SDOx	bit 7 bit 6	bit 5 bit 4	bit 3 bit 2	bit 1	bit 0
SDIx	bit 7		\frown		pit 0
Input Sample	<u>↑</u> ↑	<u>↑</u> ↑	<u>↑</u> ↑	1	↑
SSPxIF Interrupt Flag					
SSPxSR to SSPxBUF					4.
Pare Conster Adartos polita					·

FIGURE 25-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

25.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 25-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 25-39 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 25-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 25-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 25-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 25-4: MSSPX CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

R/W-0/	/0 R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is i	unchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is	set	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set		
bit 7	GCEN: Gene 1 = Enable in 0 = General c	ral Call Enable terrupt when a call address dis	bit (in I ² C Sla general call a abled	ve mode only) ddress (0x00 d	or 00h) is receiv	ed in the SSPx	κSR	
bit 6	ACKSTAT: Ad 1 = Acknowle 0 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C eceived ved	mode only)				
bit 5	ACKDT: Ackr In Receive me Value transmi 1 = Not Ackno 0 = Acknowle	nowledge Data ode: itted when the owledge odge	bit (in I ² C mo	de only) an Acknowledg	le sequence at t	the end of a rea	ceive	
bit 4	ACKEN: Acku In Master Reg 1 = Initiate A Automati 0 = Acknowle	nowledge Sequ ceive mode: Acknowledge s cally cleared b edge sequence	uence Enable sequence on y hardware. e Idle	bit (in I ² C Mas SDAx and S	ter mode only) CLx pins, and	transmit ACI	<dt bit.<="" data="" td=""></dt>	
bit 3	RCEN: Recei 1 = Enables F 0 = Receive I	ve Enable bit (Receive mode dle	in I ² C Master for I ² C	mode only)				
bit 2	PEN: Stop Condition Enable bit (in I ² C Master mode only) <u>SCKx Release Control:</u> 1 = Initiate Stop condition on SDAx and SCLx pins. Automatically cleared by hardware.							
bit 1	RSEN: Repeated 1 = Initiate R 0 = Repeated	 RSEN: Repeated Start Condition Enabled bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 						
bit 0	SEN: Start Condition Enabled bit (in I ² C Master mode only) <u>In Master mode:</u> 1 = Initiate Start condition on SDAx and SCLx pins. Automatically cleared by hardware. 0 = Start condition Idle							
	In Slave mode 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enab etching is disab	led for both sla bled	ave transmit ar	nd slave receive	e (stretch enabl	ed)	
Note 1.	For hits ACKEN	CEN PEN R	SEN SEN Ift	he l ² C module	is not in the Idl	e mode this hi	t may not be	

REGISTER 25-3: SSPxCON2: SSPx CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down)

PIC16LF1826/27			Standa Operatir	rd Operating temper	ting Cond rature	litions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
PIC16F1826/27			Standard Operating Cond Operating temperature			itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param Device Characteristics Min			Typt	Max.	Max.	Unite	Conditions			
No.	Device Unaracteristics		וקעי	+85°C	+125°C	onita	VDD	Note		
	Power-down Base Current	(IPD) ⁽²⁾								
D022			0.02	1.0	4.0	μA	1.8	WDT, BOR, FVR, and T1OSC		
			0.03	1.1	7.0	μA	3.0	disabled, all Peripherals Inactive		
D022			15	35	50	μA	1.8	WDT, BOR, FVR, and T1OSC		
		_	18	40	60	μA	3.0	disabled, all Peripherals Inactive		
		—	19	45	70	μA	5.0			
D023			0.5	1.1	5.0	μA	1.8	LPWDT Current (Note 1)		
			0.8	2.0	8.0	μA	3.0			
D023		—	16	35	50	μA	1.8	LPWDT Current (Note 1)		
			19	40	60	μA	3.0			
		—	20	45	70	μA	5.0			
D023A			8.5	23	32	μA	1.8	FVR current (Note 1)		
		—	8.5	26	40	μA	3.0			
D023A			32	62	66	μA	1.8	FVR current (Note 1)		
			39	70	80	μA	3.0			
			70	110	120	μA	5.0			
D024			8.1	14	20	μA	3.0	BOR Current (Note 1)		
D024		_	34	57	70	μA	3.0	BOR Current (Note 1)		
		_	67	100	115	μA	5.0			
D025			0.6	1.5	5.0	μA	1.8	T1OSC Current (Note 1)		
		—	0.8	2.5	8.0	μA	3.0			
D025			16	35	50	μA	1.8	T1OSC Current (Note 1)		
			21	40	60	μA	3.0			
		—	25	45	70	μA	5.0			
D026			0.1	1.1	5.0	μA	1.8	A/D Current (Note 1, Note 3), no		
		—	0.1	2.0	8.0	μA	3.0	conversion in progress		
D026		_	16	35	50	μA	1.8	A/D Current (Note 1, Note 3), no		
		_	21	40	60	μA	3.0	conversion in progress		
		_	25	45	70	μA	5.0			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support