

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Core ProcessorM8CCore Size8-BitSpeed24MHzConnectivityI*C, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)		
Core Size8-BitCore Size24MHzConnectivityI²C, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154*, 3.90mm Width)	Product Status	Active
Speed24MHzConnectivityPC, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Core Processor	M8C
ConnectivityIPC, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Core Size	8-Bit
PeripheralsPOR, PWM, WDTNumber of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Speed	24MHz
Number of I/O6Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Connectivity	I²C, SPI, UART/USART
Program Memory Size4KB (4K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Peripherals	POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Number of I/O	6
EEPROM Size-RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)	Program Memory Size	4KB (4K x 8)
RAM Size256 x 8Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.4V ~ 5.25VData ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	EEPROM Size	-
Data ConvertersA/D 4x14b; D/A 2x9bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	RAM Size	256 x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	Data Converters	A/D 4x14b; D/A 2x9b
Mounting TypeSurface MountPackage / Case8-SOIC (0.154", 3.90mm Width)Supplier Device Package8-SOIC	Oscillator Type	Internal
Package / Case 8-SOIC (0.154", 3.90mm Width) Supplier Device Package 8-SOIC	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 8-SOIC	Mounting Type	Surface Mount
	Package / Case	8-SOIC (0.154", 3.90mm Width)
	Supplier Device Package	8-SOIC
https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24123a-24sxi	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24123a-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC Functional Overview	3
PSoC Core	3
Digital System	3
Analog System	4
Additional System Resources	5
PSoC Device Characteristics	5
Getting Started	6
Application Notes	
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pinouts	
8-Pin Part Pinout	9
20-Pin Part Pinout	10
28-Pin Part Pinout	11
32-Pin Part Pinout	12
56-Pin Part Pinout	13
Register Reference	
Register Conventions	14
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	17
Operating Temperature	18
DC Electrical Characteristics	18

AC Electrical Characteristics	
Packaging Information	50
Packaging Dimensions	50
Thermal Impedances	
Capacitance on Crystal Pins	56
Solder Reflow Specifications	
Development Tool Selection	57
Software	
Development Kits	57
Evaluation Tools	57
Device Programmers	58
Accessories (Emulation and Programming)	58
Ordering Information	59
Ordering Code Definitions	59
Acronyms	60
Acronyms Used	
Reference Documents	
Document Conventions	61
Units of Measure	61
Numeric Conventions	61
Glossary	61
Errata	
Part Numbers Affected	
CY8C24123A Qualification Status	
CY8C24123A Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	70
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	70

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch-mode pump, low-voltage detection, and power-on-reset (POR). Statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks may be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. slave, master, and multi-master are supported.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2 V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 on page 6 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

2. Limited analog functionality.

3. Two analog blocks and one CapSense[®].

Getting Started

For in depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

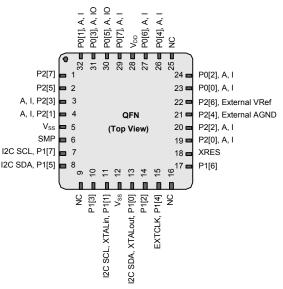
CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support


Technical support – including a searchable knowledge base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

32-Pin Part Pinout

Table 5. 32-Pin QFN^[7]

Pin No.	Ту	vpe	Pin	Description	1	
PIII NO.	Digital	Analog	Name	Description	l	
1	I/O		P2[7]			
2	I/O		P2[5]		1	
3	I/O	I	P2[3]	Direct switched capacitor block input	1	
4	I/O	1	P2[1]	Direct switched capacitor block input	1	
5	Po	wer	V _{SS}	Ground connection		
6	Po	wer	SMP	SMP connection to external components required		
7	I/O		P1[7]	I ² C SCL	1	
8	I/O		P1[5]	I ² C SDA		
9			NC	No connection. Pin must be left floating		
10	I/O		P1[3]			
11	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[8]		
12	Po	wer	V _{SS}	Ground Connection		
13	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[8]		
14	I/O		P1[2]			
15	I/O		P1[4]	Optional EXTCLK		
16		•	NC	No connection. Pin must be left floating		
17	I/O		P1[6]			
18	In	put	XRES	Active high external reset with internal pull-down		
19	I/O	I	P2[0]	Direct switched capacitor block input		
20	I/O	I	P2[2]	Direct switched capacitor block input		
21	I/O		P2[4]	External AGND		
22	I/O		P2[6]	External V _{REF}		
23	I/O	I	P0[0]	Analog column mux input		
24	I/O	I	P0[2]	Analog column mux input		
25		•	NC	No connection. Pin must be left floating		
26	I/O	I	P0[4]	Analog column mux input		
27	I/O	I	P0[6]	Analog column mux input		
28	Po	wer	V _{DD}	Supply voltage	1	
29	I/O	I	P0[7]	Analog column mux input		
30	I/O	I/O	P0[5]	Analog column mux input and column output	1	
31	I/O	I/O	P0[3]	Analog column mux input and column output		
32	I/O	I	P0[1]	Analog column mux input	1	
LEOFND.	$\Lambda = \Lambda$ polog	I = Input and			~	

Figure 7. CY8C24423A 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Notes

- The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

56-Pin Part Pinout

The 56-pin SSOP part is for the CY8C24000A On-Chip Debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.

Table 6. 56-Pin SSOP OCD

	Tv	ре	Pin						
Pin No.	Digital	Analog	Name	Description					
1	-		NC	No connection. Pin must be left floating					
2	I/O		P0[7]	Analog column mux input					
3	I/O	I	P0[5]	Analog column mux input and column output					
4	I/O	I	P0[3]	Analog column mux input and column output					
5	I/O	I	P0[1]	Analog column mux input					
6	I/O		P2[7]						
7	I/O		P2[5]						
8	I/O	I	P2[3]	Direct switched capacitor block input					
9	I/O	I	P2[1]	Direct switched capacitor block input					
10		•	NC	No connection. Pin must be left floating					
11			NC	No connection. Pin must be left floating					
12			NC	No connection. Pin must be left floating					
13			NC	No connection. Pin must be left floating					
14	OCD		OCDE	OCD even data I/O					
15	OCD		OCDO	OCD odd data output					
16	Pov	wer	SMP	SMP connection to required external compo- nents					
17			NC	No connection. Pin must be left floating					
18			NC	No connection. Pin must be left floating					
19			NC	No connection. Pin must be left floating					
20			NC	No connection. Pin must be left floating					
21			NC	No connection. Pin must be left floating					
22			NC	No connection. Pin must be left floating					
23	I/O		P1[7]	I ² C SCL					
24	I/O		P1[5]	I ² C SDA					
25			NC	No connection. Pin must be left floating					
26	I/O		P1[3]						
27	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[9]					
28	Pov	wer	V _{DD}	Supply voltage					
29			NC	No connection. Pin must be left floating					
30			NC	No connection. Pin must be left floating					
31	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[9]					
32	I/O		P1[2]						
33	I/O		P1[4]	Optional EXTCLK					
34	I/O		P1[6]						
35			NC	No connection. Pin must be left floating					
36			NC	No connection. Pin must be left floating					
37			NC	No connection. Pin must be left floating					
38			NC	No connection. Pin must be left floating					
39			NC	No connection. Pin must be left floating					
40			NC	No connection. Pin must be left floating					
41		out	XRES	Active high external reset with internal pull-down.					
42	OCD		HCLK	OCD high speed clock output.					
43	OCD		CCLK	OCD CPU clock output.					
44			NC	No connection. Pin must be left floating					
45			NC	No connection. Pin must be left floating					
46			NC	No connection. Pin must be left floating					
47			NC	No connection. Pin must be left floating					
48	I/O	I	P2[0]	Direct switched capacitor block input.					
49	I/O	I	P2[2]	Direct switched capacitor block input.					
50	I/O		P2[4]	External AGND.					
51	I/O		P2[6]	External V _{REF} .					
52	I/O	I	P0[0]	Analog column mux input.					
53	I/O	I	P0[2]	Analog column mux input and column output.					
54	I/O	I	P0[4]	Analog column mux input and column output.					
55	I/O	I	P0[6]	Analog column mux input.					
56	Pov	wer	V _{DD}	Supply voltage.					
LECEND			+ 0 - 0 + 1	out and OCD = On-Chin Debug					

Figure 8. CY8C24000A 56-Pin PSoC Device

Г	0]
NC	1		56	
AI, P0[7] =	2		55	P0[6], AI
AIO, P0[5]	3		54	P0[4], AIO
AIO, P0[3]	4		53	P0[2], AIO
AI, P0[1]	5		52	P0[0], AI
P2[7]	6		51	P2[6], External VRef
P2[5]	7		50	P2[4], External AGND
AI, P2[3]	8		49	P2[2], AI
AI, P2[1]	9		48	P2[0], AI
NC 🖬	10		47	■ NC
NC	11		46	■ NC
NC	12		45	■ NC
NC=	13		44	■ NC
OCDE	14	SSOP	43	- CCLK
OCDO	15	0001	42	HCLK
SMP=	16		41	NRES
NC	17		40	■ NC
NC	18		39	NC
NC	19		38	NC
NC	20		37	■ NC
NC=	21		36	NC NC
NC	22		35	NC
I2C SCL, P1[7]	23		34	P P1[6]
I2C SDA, P1[5]	24		33	■ P1[4], EXTCLK
NC	25			P1[2]
P1[3] =	26		31	P1[0], XTALOut, I2C SDA, SDATA
I2C SCL, XTALIn, P1[1]	27			■NC
Vss■	28		29	■ NC
L				J

SCLK,

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note

9. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

Register Reference

This section lists the registers of the CY8C24x23A PSoC device. For detailed register information, see the PSoC Programmable Sytem-on-Chip Reference Manual.

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Table 7. Abbreviations

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set, the user is in Bank 1.

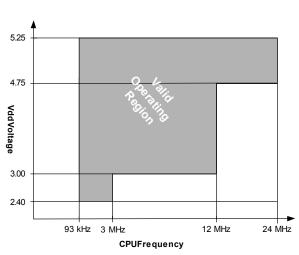
Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Table 8. Register Map Bank 0 Table: User Space

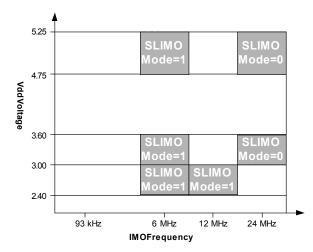
Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	1
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	1
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	+
PRT2DM2	0B	RW		4B			8B			СВ	1
	0C			4C			8C			CC	+
	0D			4D			8D			CD	
	0E			4E			8E			CE	+
	0F			4F			8E			CF	+
	10			50		ASD20CR0	90	RW		D0	+
	10			51		ASD20CR1	91	RW		D1	+
	12			52		ASD20CR2	92	RW		D2	+
	13			53	-	ASD20CR3	93	RW		D3	
	13			53		ASD20CR3 ASC21CR0	93	RW	 	D3	
	14			55		ASC21CR0 ASC21CR1	95	RW	 	D4 D5	
	16			56		ASC21CR1 ASC21CR2	96	RW	I2C CFG	D5	RW
	10			57		ASC21CR2 ASC21CR3	97	RW	I2C_CFG	D7	#
	17			58		ASCZICKS	98	RVV	I2C_SCR	D7 D8	# RW
	10			59			99		I2C_DR I2C_MSCR	D9	#
									_		
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	DW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW
DCB03DR2	2E	RW		6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	1
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	1
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	1
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	1
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	1
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	1
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW	l	F6	1
	37		ACB01CR2	77	RW	-	B7		CPU F	F7	RL
	38			78			B8		-	F8	1
	39			79			B9			F9	+
	3A			76 7A			BA		 	FA	+
	3B			7B			BB		l	FB	+
	3C			7C	<u> </u>		BC		 	FC	+
									 	FD	+
				7D							
	3D			7D 7E			BD BE				#
				7D 7E 7F			BE		CPU_SCR1 CPU SCR0	FD FE FF	#

Table 0-1. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	Name	40	ALLESS	ASC10CR0	80	RW	Name	C0	ALLESS
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRTOICO	02	RW	-	42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	-
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	-
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	-
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	-
PRT2DM0	08	RW		48		7.65 1161.6	88			C8	-
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	03 0A	RW		43 4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СА	
11(12)01	0C	1.11		4D 4C			8C			CC	
	0C 0D			40 4D			8D			CD	
	0E			4D 4E			8E			CE	
	0E 0F			4E 4F			8F			CF	
				4r 50		40D200D0	90				
	10					ASD20CR0		RW	GDI_O_IN		RW
	11			51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
	12			52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
	13			53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
	14			54		ASC21CR0	94	RW		D4	L
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW		D6	L
	17			57		ASC21CR3	97	RW		D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC			EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	+
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	+
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	+
	34		ACB01CR3	76	RW	RDI0LT1	B4	RW		F4	1
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	+
	36		ACB01CR1	76	RW	RDI0R01	B6	RW		F6	1
	37		ACB01CR2	76	RW		B7		CPU F	F7	RL
	38			78			B8		5.0	F8	
	39			78			B9			F9	┨────
	39 3A			79 7A			BA			FA	
	3A 3B			7A 7B			BB			FB	┨────
	3D 3C			76 7C			BC			FD	───
	30									FC	
	2D			70							
	3D			7D			BD				#
	3D 3E 3F			7D 7E 7F			BD BE BF		CPU_SCR1 CPU_SCR0	FD FE FF	#



Electrical Specifications


This section presents the DC and AC electrical specifications of the CY8C24x23A PSoC device. For the latest electrical specifications, check if you have the most recent datasheet by visiting the website at http://www.cypress.com.

Specifications are valid for –40 $^\circ C \le T_A \le 85 \ ^\circ C$ and $T_J \le 100 \ ^\circ C,$ except where noted.

Refer to Table 29 on page 37 for the electrical specifications for the IMO using SLIMO mode.

Figure 8. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch up current	_	-	200	mA	

Table 9. Absolute Maximum Ratings

Table 20. 2.7-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
CL	Load Capacitance	-	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high	-	1 1		Ω Ω	
V _{OHIGHOB}	High output voltage swing (Load = 1 K ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 0.2 0.5 × V _{DD} + 0.2			V V	
V _{OLOWOB}	Low output voltage swing (Load = 1 K ohms to $V_{DD/2}$) Power = low Power = high		-	0.5 × V _{DD} – 0.7 0.5 × V _{DD} – 0.7	V V	
I _{SOB}	Supply current including Opamp bias cell (No Load) Power = low Power = high	_	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	-	dB	V _{OUT} > (V _{DD} – 1.25).

Table 22. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b010	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.121	V _{DD} – 0.003	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.040	V _{DD} /2	V _{DD} /2 + 0.034	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.019	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.083	$V_{DD} - 0.002$	V _{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.040	$V_{DD}/2 - 0.001$	V _{DD} /2 + 0.033	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.016	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.075	V _{DD} - 0.002	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.040	$V_{DD}/2 - 0.001$	V _{DD} /2 + 0.032	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.015	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.074	V _{DD} - 0.002	V _{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.040	$V_{DD}/2 - 0.001$	V _{DD} /2 + 0.032	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.014	V
0b011	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.753	3.874	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.511	2.590	2.657	V
		V _{REFLO}	Ref Low	Bandgap	1.243	1.297	1.333	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	3 × Bandgap	3.767	3.881	3.974	V
		V _{AGND}	AGND	2 × Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	Bandgap	1.241	1.295	1.330	V
	RefPower = medium	V _{REFHI}	Ref High	3 × Bandgap	2.771	3.885	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.521	2.593	2.649	V
		V _{REFLO}	Ref Low	Bandgap	1.240	1.295		V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	3 × Bandgap	3.771	3.887	3.977	V
		V _{AGND}	AGND	2 × Bandgap	2.522	2.594	2.648	V
		V _{REFLO}	Ref Low	Bandgap	1.239	1.295	1.332	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.481 + P2[6]	2.569 + P2[6]	2.639 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.511	2.590	2.658	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.515 – P2[6]	2.602 – P2[6]	2.654 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.498 + P2[6]	2.579 + P2[6]	2.642 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.598 – P2[6]	2.650 – P2[6]	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.504 + P2[6]	2.583 + P2[6]	2.646 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.521	2.592	2.650	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.596 – P2[6]	2.649 – P2[6]	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.505 + P2[6]	2.586 + P2[6]	2.648 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.521	2.594	2.648	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.595 – P2[6]	2.648 – P2[6]	V

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b011	All power settings Not allowed at 2.7 V	-	-	-	-	-	-	-
0b100	All power settings Not allowed at 2.7 V	-	_	-	-	-	_	-
0b101	All power settings Not allowed at 2.7 V	-	-	-	-	-	-	-
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.160	1.302	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.007	V _{SS} + 0.025	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
		V _{AGND}	AGND	Bandgap	1.160	1.301	1.338	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.017	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
		V _{AGND}	AGND	Bandgap	1.160	1.301	1.338	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.013	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
		V _{AGND}	AGND	Bandgap	1.160	1.300	1.337	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.011	V
	RefPower = low	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.252	1.300	1.339	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.011	V
	RefPower = low	V _{REFHI}	Ref High	2 × Bandgap	Not allowed	Not allowed	Not allowed	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.252	1.300	1.339	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.01	V
0b111	All power settings Not allowed at 2.7 V	-	-	-	_	-	_	-

Table 24. 2.7-V DC Analog Reference Specifications (continued) (continued)

DC Analog PSoC Block Specifications

Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

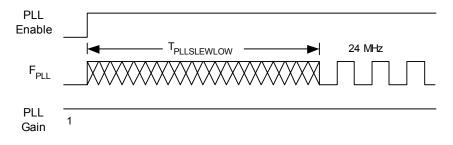
Table 25. DC Analog PSoC Block Specifications

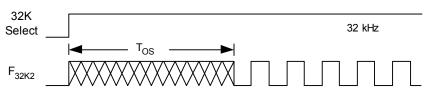
Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor unit value (continuous time)	-	12.2	-	kΩ	
C _{SC}	Capacitor unit value (switched capacitor)	-	80	_	fF	

Table 29. 5-V and 3.3-V AC Chip-Level Specifications (continued)


Symbol	Description	Min	Тур	Max	Units	Notes
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[24, 25]	MHz	Trimmed. Using factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	_	200	700	ps	N = 32
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900	ps	
	24 MHz IMO period jitter (RMS)	-	100	400	ps	
t _{jit_PLL} ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	_	200	800	ps	N = 32
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1200		
	24 MHz IMO period jitter (RMS)	-	100	700		

Notes


24.4.75 V < V_{DD} < 5.25 V. 25.3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V. 26. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.



AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 V$	-	_	50.4	MHz	
	No capture, V _{DD} < 4.75 V	-	_	25.2	MHz	
	With capture	-	—	25.2	MHz	
	Capture pulse width	50 ^[30]	-	-	ns	
Counter	Input clock frequency					
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	No enable input, V _{DD} < 4.75 V	-	_	25.2	MHz	
	With enable input	-	_	25.2	MHz	
	Enable input pulse width	50 ^[30]	_	-	ns	
Dead Band	Kill pulse width		1			
	Asynchronous restart mode	20	—	-	ns	
	Synchronous restart mode	50 ^[30]	_	_	ns	
	Disable mode	50 ^[30]	_	_	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
CRCPRS	Input clock frequency					
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	—	50.4	MHz	
mode)	V _{DD} < 4.75 V	-	—	25.2	MHz	
CRCPRS (CRC Mode)	Input clock frequency	_	_	25.2	MHz	
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	_	—	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[30]	_	-	ns	
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	_	50.4	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	_	25.2	MHz	
	V _{DD} < 4.75 V	_	-	25.2	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	
	V _{DD} < 4.75 V	-	—	25.2	MHz	

Note 30.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

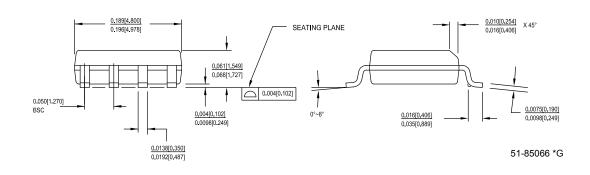
4

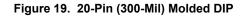
5

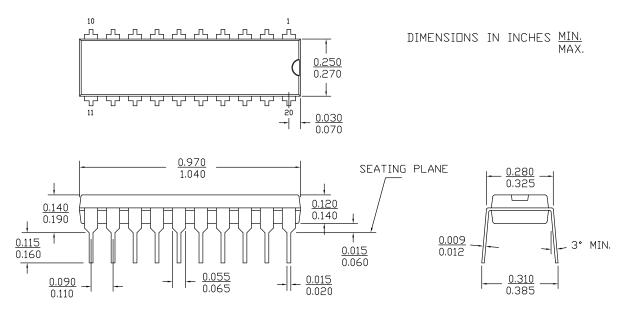
Figure 18. 8-Pin (150-Mil) SOIC

PIN 1 ID

0.150[3.810] 0.157[3.987]


> 0.230[5.842] 0.244[6.197]


1


8

- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME
- RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

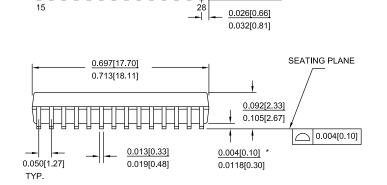
	PART #
S08.15	STANDARD PKG
SZ08.15	LEAD FREE PKG
SW8.15	LEAD FREE PKG

51-85011 *D

HHHH

ННН

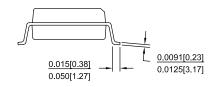
Н


Figure 24. 28-Pin (300-Mil) Molded SOIC

- 1. JEDEC STD REF MO-119
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH, BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE

3. DIMENSIONS IN INCHES

MIN.
MAX


Ð

PIN 1 ID

0.291[7.39] 0.300[7.62]

> 0.394[10.01] 0.419[10.64]

	PART#	
S28.3	STANDARD PKG.	
SZ28.3	LEAD FREE PKG.	
SX28.3	LEAD FREE PKG.	

51-85026 *H

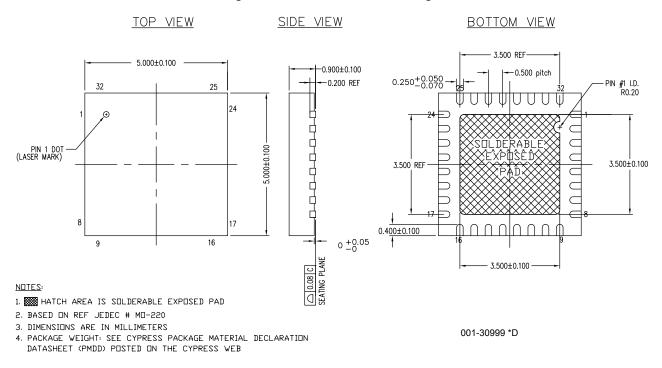
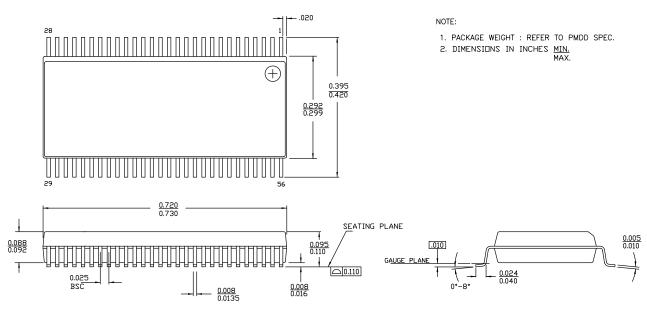



Figure 25. 32-Pin Sawn QFN Package

Important Note For information on the preferred dimensions for mounting QFN packages, see the application note, *Application Notes* for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

Figure 26. 56-Pin (300-Mil) SSOP

51-85062 *F

Glossary (continued)

bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	 A functional unit that performs a single function, such as an oscillator. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .